Last active
January 30, 2024 07:40
-
-
Save toranb/e5c48565e83e4baaaf2c5850531a8a58 to your computer and use it in GitHub Desktop.
fizzbuzz with Axon (collaboration with Ian Warshak)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
defmodule Mlearning do | |
@moduledoc false | |
def mods(x) do | |
[rem(x, 3), rem(x, 5)] | |
end | |
def fizzbuzz(n) do | |
cond do | |
rem(n, 15) == 0 -> [0, 0, 1, 0] | |
rem(n, 3) == 0 -> [1, 0, 0, 0] | |
rem(n, 5) == 0 -> [0, 1, 0, 0] | |
true -> [0, 0, 0, 1] | |
end | |
end | |
def hello() do | |
data = | |
1..1000 | |
|> Stream.map(fn n -> | |
tensor = Nx.tensor([mods(n)]) | |
label = Nx.tensor([fizzbuzz(n)]) | |
{tensor, label} | |
end) | |
model = | |
Axon.input("input", shape: {nil, 2}) | |
|> Axon.dense(3, activation: :relu) | |
|> Axon.dense(4, activation: :softmax) | |
params = | |
model | |
|> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adamw(learning_rate: 0.01)) | |
|> Axon.Loop.metric(:accuracy) | |
|> Axon.Loop.run(data, %{}, epochs: 3, compiler: EXLA) | |
{_init_fn, predict_fn} = Axon.build(model) | |
guess = fn x -> | |
mod = Nx.tensor([mods(x)]) | |
case predict_fn.(params, mod) |> Nx.argmax() |> Nx.to_flat_list() do | |
[0] -> "fizz" | |
[1] -> "buzz" | |
[2] -> "fizzbuzz" | |
[3] -> "womp" | |
end | |
end | |
guess.(3) |> IO.inspect(label: "3") | |
guess.(5) |> IO.inspect(label: "5") | |
guess.(15) |> IO.inspect(label: "15") | |
guess.(16) |> IO.inspect(label: "16") | |
guess.(15_432_115) |> IO.inspect(label: "15,432,115") | |
:ok | |
end | |
end |
Author
toranb
commented
Dec 31, 2022
•
the inspiration for this came from Bruce and the Programmer Passport series on Nx
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment