Skip to content

Instantly share code, notes, and snippets.

@torfjelde
Last active November 18, 2023 22:26
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save torfjelde/b484c689db7bf8d62d3a07ea6260827e to your computer and use it in GitHub Desktop.
Save torfjelde/b484c689db7bf8d62d3a07ea6260827e to your computer and use it in GitHub Desktop.
Using`loo` in Turing.jl
julia> using ArviZ, Turing
julia> J = 8;
julia> y = [28.0, 8.0, -3.0, 7.0, -1.0, 1.0, 18.0, 12.0];
julia> σ = [15.0, 10.0, 16.0, 11.0, 9.0, 11.0, 10.0, 18.0];
julia> schools = [
"Choate",
"Deerfield",
"Phillips Andover",
"Phillips Exeter",
"Hotchkiss",
"Lawrenceville",
"St. Paul's",
"Mt. Hermon"
];
julia> nwarmup, nsamples, nchains = 1000, 1000, 4;
julia> @model function model(J, y, σ, ::Type{TV} = Vector{Float64}) where {TV}
μ ~ Normal(0, 5)
τ ~ truncated(Cauchy(0, 5), 0, Inf)
θ = TV(undef, J)
θ .~ Normal(μ, τ)
# If we want the POINT-WISE likelihoods, we need to refer by different symbols,
# i.e. cannot use `MvNormal`.
for j = 1:J
y[j] ~ Normal(θ[j], σ[j])
end
end;
julia> param_mod = model(J, y, σ);
julia> sampler = NUTS(nwarmup, 0.8);
julia> turing_chns = sample(
param_mod,
sampler,
nwarmup + nsamples;
progress = false,
);
┌ Info: Found initial step size
└ ϵ = 0.4
julia> # Extract the loglikelihoods, and convert into form which ArviZ.jl accepts
ℓ = DynamicPPL.elementwise_loglikelihoods(param_mod, turing_chns)
Dict{DynamicPPL.VarName,Array{Float64,1}} with 8 entries:
y[3] => [-3.72618, -3.7039, -3.70514, -3.84801, -3.95597, -3.73676, -3.70973, -3.70654, -3.69412, -3.78229 … -3.73184, -3.72254, -3.97129, -3.81096, -3.73516, -3.7398, -3.77288, -3.7099, -3.69716, -3.69155]
y[1] => [-5.16847, -5.37776, -5.33898, -4.71719, -4.4846, -5.20381, -5.38348, -5.52579, -5.52824, -4.96575 … -4.82861, -4.82866, -4.65692, -4.99942, -4.61389, -5.07198, -5.26182, -5.36327, -5.89517, -6.03677]
y[4] => [-3.51839, -3.50616, -3.52167, -3.32892, -3.33368, -3.3899, -3.46509, -3.62935, -3.56666, -3.34411 … -3.31696, -3.31689, -3.64576, -3.49002, -3.31885, -3.31966, -3.37919, -3.69016, -3.47888, -3.57988]
y[5] => [-3.13272, -3.19451, -3.14482, -3.3349, -3.76755, -3.18067, -3.12868, -3.11639, -3.11626, -3.26104 … -3.16744, -3.16209, -3.42108, -3.11728, -3.22843, -3.41312, -3.20184, -3.2123, -3.13486, -3.39949]
y[6] => [-3.32513, -3.31684, -3.31948, -3.40729, -3.5989, -3.32907, -3.31691, -3.35456, -3.33646, -3.35431 … -3.33286, -3.3366, -3.49421, -3.3826, -3.36658, -3.32905, -3.50545, -3.42483, -3.47718, -3.44098]
y[7] => [-4.53587, -4.90501, -5.01885, -3.89998, -3.68522, -4.53326, -4.84988, -5.1454, -4.98813, -4.195 … -4.00933, -3.9955, -3.98242, -3.91085, -4.58724, -4.00131, -5.01847, -4.40975, -4.14685, -3.79092]
y[8] => [-4.01703, -4.03218, -4.01876, -3.87603, -3.8295, -3.95203, -4.01166, -4.07744, -4.04852, -3.89826 … -3.9914, -4.0061, -3.81249, -3.82682, -4.09209, -3.86704, -4.13824, -3.96275, -4.17168, -4.22254]
y[2] => [-3.46757, -3.50013, -3.45111, -3.24411, -3.23219, -3.35582, -3.45173, -3.70297, -3.59883, -3.31984 … -3.256, -3.27523, -3.25873, -3.33843, -3.23371, -3.34246, -3.30696, -3.87759, -3.40094, -3.53952]
julia> ℓ_mat = reduce(hcat, values(ℓ));
julia> ℓ_arr = reshape(ℓ_mat, 1, size(ℓ_mat)...); # (chain_idx, sample_idx, parameter_idx)
julia> idata = ArviZ.from_mcmcchains(
turing_chns,
coords = Dict("school" => schools),
dims = Dict(
"y" => ["school"],
"σ" => ["school"],
"θ" => ["school"],
),
library = "Turing",
log_likelihood = Dict("y" => ℓ_arr)
)
InferenceData with groups:
> posterior
> log_likelihood
> sample_stats
julia> ArviZ.loo(idata)
1×7 DataFrame
│ Row │ loo │ loo_se │ p_loo │ n_samples │ n_data_points │ warning │ loo_scale │
│ │ Float64 │ Float64 │ Float64 │ Int64 │ Int64 │ Bool │ String │
├─────┼─────────┼─────────┼──────────┼───────────┼───────────────┼─────────┼───────────┤
│ 1 │ -30.717 │ 1.38963 │ 0.781578 │ 1000 │ 8 │ 0 │ log │
@mgmverburg
Copy link

Hey @torfjelde, this is super useful for me actually! The only I wonder, is what should it look like when you have multiple chains (because of using MCMCThreads for example). So far I figure it should maybe be something like:

    ℓ_mat = reduce(hcat, [vcat(collect(values(ℓ))[i]...) for i in 1:length(values(ℓ))])
    ℓ_arr = reshape(ℓ_mat, 4, length(chain), size(ℓ_mat)[2:end]...);

I am sure there is a cleaner more robust way of writing what I am trying to achieve anyway, but it seems like you would want it to end up with: n_chains x n_samples x n_parameters as the dimensions of the ℓ_arr variable I believe right?

@torfjelde
Copy link
Author

Hey! Glad to hear:)
So I actually ended up adding this to ArviZ.jl documentation (we'll include examples of this in Turing tutorials soon too) here: https://arviz-devs.github.io/ArviZ.jl/stable/quickstart/#Additional-information-in-Turing.jl. That example uses multiple chains so should hopefully provide you with an answer!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment