Last active
October 2, 2015 05:30
-
-
Save tristanreid/6b10f191b94efd60a069 to your computer and use it in GitHub Desktop.
Scalding ExecutionApp for KMeans example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
To execute https://github.com/twitter/scalding/blob/master/scalding-core/src/main/scala/com/twitter/scalding/examples/KMeans.scala | |
and wrap results in a file. | |
Execute locally like this: | |
scala -classpath target/project-0.0.1-jar-with-dependencies.jar com.mycompany.project.KMeans2Caller \ | |
--local \ | |
--clusters <num clusters> \ | |
--input ../work/kmeansData.tsv \ | |
--output kout.tsv \ | |
--output2 kout2.tsv | |
Or on hadoop like this (copy data w/ `hadoop fs -copyFromLocal kmeansData.tsv /`) | |
hadoop jar target/project-0.0.1-jar-with-dependencies.jar com.mycompany.project.KMeans2Caller \ | |
--hdfs \ | |
--clusters 3 \ | |
--input hdfs:///kmeansData.tsv \ | |
--output hdfs:///kout.tsv \ | |
--output2 hdfs:///kout2.tsv | |
Python script to generate some data: | |
import numpy as np | |
def data(meanXY, n): | |
return np.random.multivariate_normal(meanXY, [(1, 0),(0, 1)], n) | |
data1 = data([0, 0], 100) | |
data2 = data([5, 0], 100) | |
data3 = data([0, 5], 100) | |
def format(a): | |
return "\n".join(["\t".join([str(col) for col in row]) for row in a]) | |
# You can also write the name of the parent data cluster, if you want to keep track of that | |
with open('kmeansData.tsv', 'w') as f: | |
f.write(format(data1) | |
f.write(format(data2) | |
*/ | |
import com.twitter.scalding._ | |
import com.twitter.scalding.examples.KMeans.LabeledVector | |
object KMeans2Caller extends ExecutionApp { | |
override def job = Execution.getArgs.flatMap { case args => | |
val numClusters = args("clusters").toInt | |
val inputFile = args("input") | |
val outputFile = args("output") | |
val outputFile2 = args("output2") | |
val initialPoints: TypedPipe[Vector[Double]] = | |
TypedPipe.from(TypedTsv[(Double, Double)](inputFile)) | |
.map { case (x, y) => Vector[Double](x, y) } | |
KMeans2(numClusters, initialPoints) | |
.flatMap { result => | |
val (stat: Int, vals: ValuePipe[List[LabeledVector]], res: TypedPipe[LabeledVector]) = result | |
println(s"************ SUCCESS, STAT: $stat ***************") | |
val e1 = vals.writeExecution(TypedTsv(outputFile)) | |
val e2 = res.writeExecution(TypedTsv(outputFile2)) | |
e1.zip(e2) | |
}.unit | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment