Created
June 30, 2018 03:53
-
-
Save tristansokol/6f95f69dfc04cd96c9a69f8b9f2d2093 to your computer and use it in GitHub Desktop.
linear regression with tensorflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.11.7"></script> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.2/Chart.bundle.min.js"></script> | |
<div style="width:400px;"> | |
<canvas id="myChart" width="400" height="400"></canvas> | |
</div> | |
<button onclick="train()">Train the model 1 step</button> | |
<script> | |
const trainX = [ | |
3.3, | |
4.4, | |
5.5, | |
6.71, | |
6.93, | |
4.168, | |
9.779, | |
6.182, | |
7.59, | |
2.167, | |
7.042, | |
10.791, | |
5.313, | |
7.997, | |
5.654, | |
9.27, | |
3.1 | |
]; | |
const trainY = [ | |
1.7, | |
2.76, | |
2.09, | |
3.19, | |
1.694, | |
1.573, | |
3.366, | |
2.596, | |
2.53, | |
1.221, | |
2.827, | |
3.465, | |
1.65, | |
2.904, | |
2.42, | |
2.94, | |
1.3 | |
]; | |
const m = tf.variable(tf.scalar(Math.random())); | |
const b = tf.variable(tf.scalar(Math.random())); | |
function predict(x) { | |
return tf.tidy(function() { | |
return m.mul(x).add(b); | |
}); | |
} | |
function loss(prediction, labels) { | |
//subtracts the two arrays & squares each element of the tensor then finds the mean. | |
const error = prediction.sub(labels).square().mean(); | |
return error; | |
} | |
function train() { | |
const learningRate = 0.01; | |
const optimizer = tf.train.sgd(learningRate); | |
optimizer.minimize(function() { | |
const predsYs = predict(tf.tensor1d(trainX)); | |
console.log(predsYs); | |
stepLoss = loss(predsYs, tf.tensor1d(trainY)) | |
console.log(stepLoss.dataSync()[0]) | |
return stepLoss; | |
}); | |
plot(); | |
} | |
const predictionsBefore = predict(tf.tensor1d(trainX)); | |
async function plot() { | |
let plotData = []; | |
for (let i = 0; i < trainY.length; i++) { | |
plotData.push({ x: trainX[i], y: trainY[i] }); | |
} | |
var ctx = document.getElementById("myChart").getContext("2d"); | |
var scatterChart = new Chart(ctx, { | |
type: "line", | |
data: { | |
datasets: [ | |
{ | |
label: "Training Data", | |
showLine: false, | |
data: plotData, | |
fill: false | |
}, | |
{ | |
label: "Y = "+m.dataSync()[0]+"X + " + b.dataSync()[0], | |
data: [ | |
{ | |
x: 0, | |
y: b.dataSync()[0] | |
}, | |
{ | |
x: 11, | |
y: 11 * m.dataSync()[0] + b.dataSync()[0] | |
} | |
], | |
// Changes this dataset to become a line | |
type: "line", | |
borderColor: "red", | |
fill: false | |
} | |
] | |
}, | |
options: { | |
scales: { | |
xAxes: [ | |
{ | |
type: "linear", | |
position: "bottom" | |
} | |
] | |
} | |
} | |
}); | |
} | |
plot(); | |
</script> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment