Skip to content

Instantly share code, notes, and snippets.

@tscohen
Created August 21, 2015 21:19
Show Gist options
  • Save tscohen/c0f29b5ff0b5e978cfc5 to your computer and use it in GitHub Desktop.
Save tscohen/c0f29b5ff0b5e978cfc5 to your computer and use it in GitHub Desktop.
import string
import numpy as np
import theano
import theano.tensor as T
from theano.sandbox.cuda import cuda_available, GpuOp
from theano.ifelse import ifelse
if cuda_available:
from theano.sandbox.cuda import (basic_ops, CudaNdarrayType,
CudaNdarray)
from theano.misc.pycuda_init import pycuda_available
if pycuda_available:
import pycuda.gpuarray
try:
import scikits.cuda
from scikits.cuda import fft, cublas
scikits.cuda.misc.init()
scikits_cuda_available = True
except ImportError:
scikits_cuda_available = False
# TODO: investigate the effect of enabling fastmath on FFT performance
# (how can it be enabled?).
# base class for shared code between scikits.cuda-based ops
class ScikitsCudaOp(GpuOp):
def __eq__(self, other):
return type(self) == type(other)
def __hash__(self):
return hash(type(self))
def __str__(self):
return self.__class__.__name__
def output_type(self, inp):
raise NotImplementedError
def make_node(self, inp):
inp = basic_ops.gpu_contiguous(
basic_ops.as_cuda_ndarray_variable(inp))
assert inp.dtype == "float32"
return theano.Apply(self, [inp], [self.output_type(inp)()])
def make_thunk(self, node, storage_map, _, _2):
if not scikits_cuda_available:
raise RuntimeError(
"scikits.cuda is needed for all GPU fft implementation,"
" including fftconv.")
class CuFFTOp(ScikitsCudaOp):
def output_type(self, inp):
return CudaNdarrayType(
broadcastable=[False] * inp.type.ndim)
# TODO: make broadcast-preserving
# for some reason, this does not work:
#return CudaNdarrayType(
# broadcastable=inp.broadcastable + (False,))
def make_thunk(self, node, storage_map, _, _2):
super(CuFFTOp, self).make_thunk(node, storage_map, _, _2)
from theano.misc.pycuda_utils import to_gpuarray
inputs = [storage_map[v] for v in node.inputs]
outputs = [storage_map[v] for v in node.outputs]
plan_input_shape = [None]
plan = [None]
def thunk():
input_shape = inputs[0][0].shape
# construct output shape
output_shape = tuple(input_shape)
# print 'FFT shapes:', input_shape, '->', output_shape
# print 'Batch size:', input_shape[0]
# print 'Core shape:', input_shape[1:-1]
z = outputs[0]
# only allocate if there is no previous allocation of the right size.
if z[0] is None or z[0].shape != output_shape:
z[0] = CudaNdarray.zeros(output_shape)
input_pycuda = to_gpuarray(inputs[0][0])
# I thought we'd need to change the type on output_pycuda
# so it is complex64, but as it turns out scikits.cuda.fft
# doesn't really care either way and treats the array as
# if it is complex64 anyway.
output_pycuda = to_gpuarray(z[0])
# only initialise plan if necessary
if plan[0] is None or plan_input_shape[0] != input_shape:
plan_input_shape[0] = input_shape
plan[0] = fft.Plan(shape=input_shape[1:-1], # Exclude batch dim and complex dim
in_dtype=np.complex64,
out_dtype=np.complex64,
batch=input_shape[0])
fft.fft(input_pycuda, output_pycuda, plan[0])
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
def grad(self, inputs, output_grads):
return [cuifft(output_grads[0])]
class CuIFFTOp(ScikitsCudaOp):
def output_type(self, inp):
# remove extra real/imag dim
return CudaNdarrayType(
broadcastable=[False] * inp.type.ndim)
def make_thunk(self, node, storage_map, _, _2):
super(CuIFFTOp, self).make_thunk(node, storage_map, _, _2)
from theano.misc.pycuda_utils import to_gpuarray
inputs = [storage_map[v] for v in node.inputs]
outputs = [storage_map[v] for v in node.outputs]
plan_input_shape = [None]
plan = [None]
def thunk():
input_shape = inputs[0][0].shape
# construct output shape
output_shape = tuple(input_shape)
z = outputs[0]
# only allocate if there is no previous allocation of the
# right size.
if z[0] is None or z[0].shape != output_shape:
z[0] = CudaNdarray.zeros(output_shape)
input_pycuda = to_gpuarray(inputs[0][0])
# input_pycuda is a float32 array with an extra dimension,
# but will be interpreted by scikits.cuda as a complex64
# array instead.
output_pycuda = to_gpuarray(z[0])
# only initialise plan if necessary
if plan[0] is None or plan_input_shape[0] != input_shape:
plan_input_shape[0] = input_shape
plan[0] = fft.Plan(output_shape[1:-1], np.complex64, np.complex64,
batch=output_shape[0])
fft.ifft(input_pycuda, output_pycuda, plan[0])
# strangely enough, enabling rescaling here makes it run
# very, very slowly. so do this rescaling manually
# afterwards!
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
def grad(self, inputs, output_grads):
return [cufft(output_grads[0])]
def to_complex_gpuarray(x, copyif=False):
"""
adapted version of theano.misc.pycuda_utils.to_gpuarray that takes
an array with an extra trailing dimension of length 2 for
real/imaginary parts, and turns it into a complex64 PyCUDA
GPUArray.
"""
if not isinstance(x, CudaNdarray):
raise ValueError("We can transfer only CudaNdarray "
"to pycuda.gpuarray.GPUArray")
else:
# Check if trailing dimension has length 2
assert x.shape[-1] == 2
# check if dtype is float32
assert x.dtype == 'float32'
# Check if it is c contiguous
size = 1
c_contiguous = True
for i in range(x.ndim - 1, -1, -1):
if x.shape[i] == 1:
continue
if x._strides[i] != size:
c_contiguous = False
break
size *= x.shape[i]
if not c_contiguous:
if copyif:
x = x.copy()
else:
raise ValueError("We were asked to not copy memory, "
"but the memory is not c contiguous.")
# Now x is always c contiguous
px = pycuda.gpuarray.GPUArray(x.shape[:-1], np.complex64, base=x,
gpudata=x.gpudata)
return px
def bptrs(a):
"""
Pointer array when input represents a batch of matrices.
taken from scikits.cuda tests/test_cublas.py
"""
return pycuda.gpuarray.arange(a.ptr, a.ptr + a.shape[0] * a.strides[0],
a.strides[0], dtype=cublas.ctypes.c_void_p)
def sc_complex_dot_batched(bx_gpu, by_gpu, bc_gpu, transa='N', transb='N',
handle=None):
"""
uses cublasCgemmBatched to compute a bunch of complex dot products
in parallel
"""
if handle is None:
handle = scikits.cuda.misc._global_cublas_handle
assert len(bx_gpu.shape) == 3
assert len(by_gpu.shape) == 3
assert len(bc_gpu.shape) == 3
assert bx_gpu.dtype == np.complex64
assert by_gpu.dtype == np.complex64
assert bc_gpu.dtype == np.complex64
# Get the shapes of the arguments
bx_shape = bx_gpu.shape
by_shape = by_gpu.shape
# Perform matrix multiplication for 2D arrays:
alpha = np.complex64(1.0)
beta = np.complex64(0.0)
transa = string.lower(transa)
transb = string.lower(transb)
if transb in ['t', 'c']:
N, m, k = by_shape
elif transb in ['n']:
N, k, m = by_shape
else:
raise ValueError('invalid value for transb')
if transa in ['t', 'c']:
N2, l, n = bx_shape
elif transa in ['n']:
N2, n, l = bx_shape
else:
raise ValueError('invalid value for transa')
if l != k:
raise ValueError('objects are not aligned')
if N != N2:
raise ValueError('batch sizes are not the same')
if transb == 'n':
lda = max(1, m)
else:
lda = max(1, k)
if transa == 'n':
ldb = max(1, k)
else:
ldb = max(1, n)
ldc = max(1, m)
# construct pointer arrays needed for cublasCgemmBatched
bx_arr = bptrs(bx_gpu)
by_arr = bptrs(by_gpu)
bc_arr = bptrs(bc_gpu)
cublas.cublasCgemmBatched(handle, transb, transa, m, n, k, alpha,
by_arr.gpudata, lda, bx_arr.gpudata, ldb,
beta, bc_arr.gpudata, ldc, N)
class BatchedComplexDotOp(ScikitsCudaOp):
"""
This version uses cublasCgemmBatched under the hood, instead of
doing multiple cublasCgemm calls.
"""
def make_node(self, inp1, inp2):
inp1 = basic_ops.gpu_contiguous(
basic_ops.as_cuda_ndarray_variable(inp1))
inp2 = basic_ops.gpu_contiguous(
basic_ops.as_cuda_ndarray_variable(inp2))
assert inp1.dtype == "float32"
assert inp2.dtype == "float32"
assert inp1.ndim == 4 # (batch, a, b, real/imag)
assert inp2.ndim == 4
return theano.Apply(self, [inp1, inp2], [self.output_type(inp1)()])
def output_type(self, inp):
return CudaNdarrayType(broadcastable=[False] * inp.type.ndim)
def make_thunk(self, node, storage_map, _, _2):
super(BatchedComplexDotOp, self).make_thunk(node, storage_map, _, _2)
inputs = [storage_map[v] for v in node.inputs]
outputs = [storage_map[v] for v in node.outputs]
def thunk():
bx = inputs[0]
by = inputs[1]
input_shape_x = bx[0].shape # (batch, a, b, 2)
input_shape_y = by[0].shape # (batch, b, c, 2)
output_shape = (input_shape_x[0], input_shape_x[1],
input_shape_y[2], 2) # (batch, a, c, 2)
bz = outputs[0]
# only allocate if there is no previous allocation of the
# right size.
if bz[0] is None or bz[0].shape != output_shape:
bz[0] = CudaNdarray.zeros(output_shape)
input_bx_pycuda = to_complex_gpuarray(bx[0])
input_by_pycuda = to_complex_gpuarray(by[0])
output_b_pycuda = to_complex_gpuarray(bz[0])
# fancy native batched version
sc_complex_dot_batched(input_bx_pycuda, input_by_pycuda,
output_b_pycuda)
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
curfft = CuRFFTOp()
cuirfft = CuIRFFTOp()
cufft = CuFFTOp()
cuifft = CuIFFTOp()
batched_complex_dot = BatchedComplexDotOp()
def mult_and_reduce(input_fft_v, filters_fft_v, input_shape=None,
filter_shape=None):
"""
input_fft_v is (b, ic, i0, i1//2 + 1, 2)
filters_fft_v is (oc, ic, i0, i1//2 + 1, 2)
"""
if input_shape is None:
input_shape = input_fft_v.shape # symbolic
if filter_shape is None:
filter_shape = filters_fft_v.shape # symbolic
b, ic, i0, i1_f, _ = input_shape
oc = filter_shape[0]
# reshape to flatten the dimensions that are multiplied elemwise
input_r = input_fft_v.reshape((b, ic, i0 * i1_f, 2))
filters_r = filters_fft_v.reshape((oc, ic, i0 * i1_f, 2))
# shuffle for batched dot product
input_s = input_r.dimshuffle(2, 0, 1, 3) # (i0 * i1_f, b, ic, 2)
filters_s = filters_r.dimshuffle(2, 1, 0, 3) # (i0 * i1_f, ic, oc, 2)
output_s = batched_complex_dot(input_s, filters_s)
# shuffle again
output_r = output_s.dimshuffle(1, 2, 0, 3)
# reshape to unflatten
output = output_r.reshape((b, oc, i0, i1_f, 2))
return output
def conv2d_fft(input, filters, image_shape=None, filter_shape=None,
border_mode='valid', pad_last_dim=False):
"""
Perform a convolution through fft.
Only support input which will be even on the last dimension
(width). All other dimensions can be anything and the filters can
have an even or odd width.
If you must use input which has an odd width, you can either pad
it or use the `pad_last_dim` argument which will do it for you and
take care to strip the padding before returning. Don't use this
argument if you are not sure the input is odd since the padding is
unconditional and will make even input odd, thus leading to
problems.
On valid mode the filters must be smaller than the input.
input: (b, ic, i0, i1)
filters: (oc, ic, f0, f1)
border_mode: 'valid' of 'full'
pad_last_dim: Unconditionally pad the last dimension of the input
to to turn it from odd to even. Will strip the
padding before returning the result.
"""
# use symbolic shapes to compute shape info at runtime if not specified
if image_shape is None:
image_shape = input.shape
if filter_shape is None:
filter_shape = filters.shape
# batch size, input channels, input dim 0, input dim 1
b, ic, i0, i1 = image_shape
# output channels, input channels, filter dim 0, filter dim 1
oc, ic_, f0, f1 = filter_shape
# pad filters/image to output shape
if border_mode == 'valid':
o0 = i0
if pad_last_dim:
o1 = i1 + 1
input_padded = T.zeros((b, ic, o0, o1), dtype='float32')
input_padded = T.set_subtensor(input_padded[:, :, :i0, :i1],
input)
else:
o1 = i1
input_padded = input
filters_padded = T.zeros((oc, ic, o0, o1), dtype='float32')
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1],
filters)
elif border_mode == 'full':
# In this particular case, the values of (o0, o1) represent
# the dimensions of the work buffer more than the actual dimensions
# of the desired output.
o0 = i0 + 2 * (f0 - 1)
o1 = i1 + 2 * (f1 - 1)
if pad_last_dim:
o1 = o1 + 1
# We line up the filters and the images in a way
# such that the filters are tightly placed against the
# top-left of the array, and the images intersect with
# them on one pixel. The top-left pixel of the images
# is the bottom-right pixel of the filters when we
# do the layout here.
filters_padded = T.zeros((oc, ic, o0, o1), dtype='float32')
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1],
filters)
input_padded = T.zeros((b, ic, o0, o1), dtype='float32')
input_padded = T.set_subtensor(input_padded[:, :, (f0 - 1):(f0 - 1 + i0), (f1 - 1):(f1 - 1 + i1)],
input)
else:
raise ValueError('invalid mode')
input_padded = T.opt.Assert("in conv2d_fft: width is not even")(
input_padded, T.eq(o1 % 2, 0))
# reshape for FFT
input_flat = input_padded.reshape((b * ic, o0, o1))
filters_flat = filters_padded.reshape((oc * ic, o0, o1))
# perform FFT
input_fft_flat = curfft(input_flat) # (b * ic, o0, o1//2 + 1, 2)
filters_fft_flat = curfft(filters_flat) # (oc * ic, o0, o1//2 + 1, 2)
# unfold ic dimension
input_fft_v_shape = (b, ic, o0, o1 // 2 + 1, 2)
filters_fft_v_shape = (oc, ic, o0, o1 // 2 + 1, 2)
input_fft_v = input_fft_flat.reshape(input_fft_v_shape)
filters_fft_v = filters_fft_flat.reshape(filters_fft_v_shape)
# (b, oc, o0, o1//2 + 1, 2)
output_fft_s = mult_and_reduce(input_fft_v, filters_fft_v,
input_shape=input_fft_v_shape,
filter_shape=filters_fft_v_shape)
# reshape for IFFT
output_fft_flat = output_fft_s.reshape((b * oc, o0, o1 // 2 + 1, 2))
# perform IFFT
output_flat = cuirfft(output_fft_flat) # (b * oc, o0, o1)
# reshape
output_circ = output_flat.reshape((b, oc, o0, o1)) # circular!
# Now we extract the region of interest.
# We just cut it out from the output_circ
# array that was used for the computation.
# We do not need to handle pad_last_dim in a
# special way because we specify explicitly here
# how much values are expected.
if border_mode == 'valid':
output = output_circ[:, :, (f0-1):(f0-1 + i0-f0+1), (f1-1):(f1-1 + i1-f1+1)]
elif border_mode == 'full':
output = output_circ[:, :, (f0-1):(f0-1 + i0+f0-1), (f1-1):(f1-1 + i1+f1-1)]
else:
raise ValueError('invalid mode')
# Rescale manually. This is just a factor that comes in during the
# trip through FFT and inverse FFT.
output = (1.0 / T.cast(o0 * o1, 'float32')) * output
# output should now be the result of a batched valid convolution
# of the input with the filters.
return basic_ops.as_cuda_ndarray_variable(output)
def conv3d_fft(input, filters, image_shape=None, filter_shape=None,
border_mode='valid', pad_last_dim=False):
"""
Perform a convolution through fft.
Only supports input whose shape is even on the last dimension.
All other dimensions can be anything and the filters can
have an even or odd last dimension.
The semantics associated with the last three dimensions
are not important as long as they are in the same order between
the inputs and the filters. For example, when the convolution
is done on a sequence of images, they could be either
(duration, height, width) or (height, width, duration).
If you must use input which has an odd width, you can either pad
it or use the `pad_last_dim` argument which will do it for you and
take care to strip the padding before returning. pad_last_dim checks
that the last dimension is odd before the actual paddding
On valid mode the filters must be smaller than the input.
input: (b, ic, i0, i1, i2)
filters: (oc, ic, f0, f1, i2)
border_mode: 'valid' of 'full'
pad_last_dim: Unconditionally pad the last dimension of the input
to to turn it from odd to even. Will strip the
padding before returning the result.
"""
# use symbolic shapes to compute shape info at runtime if not specified
if image_shape is None:
image_shape = input.shape
if filter_shape is None:
filter_shape = filters.shape
# batch size, input channels, input dim 0, input dim 1
b, ic, i0, i1, i2 = image_shape
# output channels, input channels, filter dim 0, filter dim 1
oc, ic_, f0, f1, f2 = filter_shape
# Check that the last dimension is odd
is_odd = T.eq(T.mod(input.shape[4], 2), 1)
# pad filters/image to output shape
if border_mode == 'valid':
o0 = i0
o1 = i1
o2 = i2
input_padded = input
if pad_last_dim:
o2 = ifelse(is_odd, o2 + 1, o2)
input_padded = T.zeros((b, ic, o0, o1, o2), dtype='float32')
input_padded = T.set_subtensor(input_padded[:, :, :i0, :i1, :i2],
input)
filters_padded = T.zeros((oc, ic, o0, o1, o2), dtype='float32')
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1, :f2],
filters)
elif border_mode == 'full':
# In this particular case, the values of (o0, o1) represent
# the dimensions of the work buffer more than the actual dimensions
# of the desired output.
o0 = i0 + 2 * (f0 - 1)
o1 = i1 + 2 * (f1 - 1)
o2 = i2 + 2 * (f2 - 1)
if pad_last_dim:
o2 = ifelse(is_odd, o2 + 1, o2)
# We line up the filters and the images in a way
# such that the filters are tightly placed against the
# top-left of the array, and the images intersect with
# them on one pixel. The top-left pixel of the images
# is the bottom-right pixel of the filters when we
# do the layout here.
filters_padded = T.zeros((oc, ic, o0, o1, o2), dtype='float32')
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1, :f2],
filters)
input_padded = T.zeros((b, ic, o0, o1, o2), dtype='float32')
input_padded = T.set_subtensor(input_padded[:, :, (f0 - 1):(f0 - 1 + i0), (f1 - 1):(f1 - 1 + i1), (f2 - 1):(f2 - 1 + i2)],
input)
else:
raise ValueError('invalid mode')
# reshape for FFT
input_flat = input_padded.reshape((b * ic, o0, o1, o2))
filters_flat = filters_padded.reshape((oc * ic, o0, o1, o2))
# perform FFT
input_fft_flat = curfft(input_flat) # (b * ic, o0, o1, o2//2 + 1, 2)
filters_fft_flat = curfft(filters_flat) # (oc * ic, o0, o1, o2//2 + 1, 2)
# Unfold ic dimension.
# We have to collapse two dimensions together
# in order to reuse the same `mult_and_reduce`.
# This explains the o0 * 01 instead of just keeping
# the two dimensions intact.
input_fft_v_shape = (b, ic, o0 * o1, o2 // 2 + 1, 2)
filters_fft_v_shape = (oc, ic, o0 * o1, o2 // 2 + 1, 2)
input_fft_v = input_fft_flat.reshape(input_fft_v_shape)
filters_fft_v = filters_fft_flat.reshape(filters_fft_v_shape)
# (b, oc, o0 * o1, o2//2 + 1, 2)
output_fft_s = mult_and_reduce(input_fft_v, filters_fft_v,
input_shape=input_fft_v_shape,
filter_shape=filters_fft_v_shape)
#output_fft_s = input_fft_v
# reshape for IFFT
output_fft_flat = output_fft_s.reshape((b * oc, o0, o1, o2 // 2 + 1, 2))
# perform IFFT
output_flat = cuirfft(output_fft_flat) # (b * oc, o0, o1, o2)
# reshape
output_circ = output_flat.reshape((b, oc, o0, o1, o2)) # circular!
# Now we extract the region of interest.
# We just cut it out from the output_circ
# array that was used for the computation.
# We do not need to handle pad_last_dim in a
# special way because we specify explicitly here
# how much values are expected.
if border_mode == 'valid':
output = output_circ[:, :, (f0-1):(f0-1 + i0-f0+1), (f1-1):(f1-1 + i1-f1+1), (f2-1):(f2-1 + i2-f2+1)]
elif border_mode == 'full':
output = output_circ[:, :, (f0-1):(f0-1 + i0+f0-1), (f1-1):(f1-1 + i1+f1-1), (f2-1):(f2-1 + i2+f2-1)]
else:
raise ValueError('invalid mode')
#output = output_circ[:, :, :, :, :]
# Rescale manually. This is just a factor that comes in during the
# trip through FFT and inverse FFT.
output = (1.0 / T.cast(o0 * o1 * o2, 'float32')) * output
# output should now be the result of a batched valid convolution
# of the input with the filters.
return basic_ops.as_cuda_ndarray_variable(output)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment