Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Train your own net prototxt files
name: "MYNET"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
layer {
name: "conv1/7x7_s2"
type: "Convolution"
bottom: "data"
top: "conv1/7x7_s2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 3
kernel_size: 7
stride: 2
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv1/relu_7x7"
type: "ReLU"
bottom: "conv1/7x7_s2"
top: "conv1/7x7_s2"
}
layer {
name: "pool1/3x3_s2"
type: "Pooling"
bottom: "conv1/7x7_s2"
top: "pool1/3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "pool1/norm1"
type: "LRN"
bottom: "pool1/3x3_s2"
top: "pool1/norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2/3x3_reduce"
type: "Convolution"
bottom: "pool1/norm1"
top: "conv2/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv2/relu_3x3_reduce"
type: "ReLU"
bottom: "conv2/3x3_reduce"
top: "conv2/3x3_reduce"
}
layer {
name: "conv2/3x3"
type: "Convolution"
bottom: "conv2/3x3_reduce"
top: "conv2/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv2/relu_3x3"
type: "ReLU"
bottom: "conv2/3x3"
top: "conv2/3x3"
}
layer {
name: "conv2/norm2"
type: "LRN"
bottom: "conv2/3x3"
top: "conv2/norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2/3x3_s2"
type: "Pooling"
bottom: "conv2/norm2"
top: "pool2/3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_3a/1x1"
type: "Convolution"
bottom: "pool2/3x3_s2"
top: "inception_3a/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_1x1"
type: "ReLU"
bottom: "inception_3a/1x1"
top: "inception_3a/1x1"
}
layer {
name: "inception_3a/3x3_reduce"
type: "Convolution"
bottom: "pool2/3x3_s2"
top: "inception_3a/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_3a/3x3_reduce"
top: "inception_3a/3x3_reduce"
}
layer {
name: "inception_3a/3x3"
type: "Convolution"
bottom: "inception_3a/3x3_reduce"
top: "inception_3a/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_3x3"
type: "ReLU"
bottom: "inception_3a/3x3"
top: "inception_3a/3x3"
}
layer {
name: "inception_3a/5x5_reduce"
type: "Convolution"
bottom: "pool2/3x3_s2"
top: "inception_3a/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_3a/5x5_reduce"
top: "inception_3a/5x5_reduce"
}
layer {
name: "inception_3a/5x5"
type: "Convolution"
bottom: "inception_3a/5x5_reduce"
top: "inception_3a/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_5x5"
type: "ReLU"
bottom: "inception_3a/5x5"
top: "inception_3a/5x5"
}
layer {
name: "inception_3a/pool"
type: "Pooling"
bottom: "pool2/3x3_s2"
top: "inception_3a/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_3a/pool_proj"
type: "Convolution"
bottom: "inception_3a/pool"
top: "inception_3a/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_pool_proj"
type: "ReLU"
bottom: "inception_3a/pool_proj"
top: "inception_3a/pool_proj"
}
layer {
name: "inception_3a/output"
type: "Concat"
bottom: "inception_3a/1x1"
bottom: "inception_3a/3x3"
bottom: "inception_3a/5x5"
bottom: "inception_3a/pool_proj"
top: "inception_3a/output"
}
layer {
name: "inception_3b/1x1"
type: "Convolution"
bottom: "inception_3a/output"
top: "inception_3b/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_1x1"
type: "ReLU"
bottom: "inception_3b/1x1"
top: "inception_3b/1x1"
}
layer {
name: "inception_3b/3x3_reduce"
type: "Convolution"
bottom: "inception_3a/output"
top: "inception_3b/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_3b/3x3_reduce"
top: "inception_3b/3x3_reduce"
}
layer {
name: "inception_3b/3x3"
type: "Convolution"
bottom: "inception_3b/3x3_reduce"
top: "inception_3b/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_3x3"
type: "ReLU"
bottom: "inception_3b/3x3"
top: "inception_3b/3x3"
}
layer {
name: "inception_3b/5x5_reduce"
type: "Convolution"
bottom: "inception_3a/output"
top: "inception_3b/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_3b/5x5_reduce"
top: "inception_3b/5x5_reduce"
}
layer {
name: "inception_3b/5x5"
type: "Convolution"
bottom: "inception_3b/5x5_reduce"
top: "inception_3b/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_5x5"
type: "ReLU"
bottom: "inception_3b/5x5"
top: "inception_3b/5x5"
}
layer {
name: "inception_3b/pool"
type: "Pooling"
bottom: "inception_3a/output"
top: "inception_3b/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_3b/pool_proj"
type: "Convolution"
bottom: "inception_3b/pool"
top: "inception_3b/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_pool_proj"
type: "ReLU"
bottom: "inception_3b/pool_proj"
top: "inception_3b/pool_proj"
}
layer {
name: "inception_3b/output"
type: "Concat"
bottom: "inception_3b/1x1"
bottom: "inception_3b/3x3"
bottom: "inception_3b/5x5"
bottom: "inception_3b/pool_proj"
top: "inception_3b/output"
}
layer {
name: "pool3/3x3_s2"
type: "Pooling"
bottom: "inception_3b/output"
top: "pool3/3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_4a/1x1"
type: "Convolution"
bottom: "pool3/3x3_s2"
top: "inception_4a/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_1x1"
type: "ReLU"
bottom: "inception_4a/1x1"
top: "inception_4a/1x1"
}
layer {
name: "inception_4a/3x3_reduce"
type: "Convolution"
bottom: "pool3/3x3_s2"
top: "inception_4a/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4a/3x3_reduce"
top: "inception_4a/3x3_reduce"
}
layer {
name: "inception_4a/3x3"
type: "Convolution"
bottom: "inception_4a/3x3_reduce"
top: "inception_4a/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 208
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_3x3"
type: "ReLU"
bottom: "inception_4a/3x3"
top: "inception_4a/3x3"
}
layer {
name: "inception_4a/5x5_reduce"
type: "Convolution"
bottom: "pool3/3x3_s2"
top: "inception_4a/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4a/5x5_reduce"
top: "inception_4a/5x5_reduce"
}
layer {
name: "inception_4a/5x5"
type: "Convolution"
bottom: "inception_4a/5x5_reduce"
top: "inception_4a/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 48
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_5x5"
type: "ReLU"
bottom: "inception_4a/5x5"
top: "inception_4a/5x5"
}
layer {
name: "inception_4a/pool"
type: "Pooling"
bottom: "pool3/3x3_s2"
top: "inception_4a/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4a/pool_proj"
type: "Convolution"
bottom: "inception_4a/pool"
top: "inception_4a/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_pool_proj"
type: "ReLU"
bottom: "inception_4a/pool_proj"
top: "inception_4a/pool_proj"
}
layer {
name: "inception_4a/output"
type: "Concat"
bottom: "inception_4a/1x1"
bottom: "inception_4a/3x3"
bottom: "inception_4a/5x5"
bottom: "inception_4a/pool_proj"
top: "inception_4a/output"
}
layer {
name: "inception_4b/1x1"
type: "Convolution"
bottom: "inception_4a/output"
top: "inception_4b/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 160
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_1x1"
type: "ReLU"
bottom: "inception_4b/1x1"
top: "inception_4b/1x1"
}
layer {
name: "inception_4b/3x3_reduce"
type: "Convolution"
bottom: "inception_4a/output"
top: "inception_4b/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 112
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4b/3x3_reduce"
top: "inception_4b/3x3_reduce"
}
layer {
name: "inception_4b/3x3"
type: "Convolution"
bottom: "inception_4b/3x3_reduce"
top: "inception_4b/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 224
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_3x3"
type: "ReLU"
bottom: "inception_4b/3x3"
top: "inception_4b/3x3"
}
layer {
name: "inception_4b/5x5_reduce"
type: "Convolution"
bottom: "inception_4a/output"
top: "inception_4b/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4b/5x5_reduce"
top: "inception_4b/5x5_reduce"
}
layer {
name: "inception_4b/5x5"
type: "Convolution"
bottom: "inception_4b/5x5_reduce"
top: "inception_4b/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_5x5"
type: "ReLU"
bottom: "inception_4b/5x5"
top: "inception_4b/5x5"
}
layer {
name: "inception_4b/pool"
type: "Pooling"
bottom: "inception_4a/output"
top: "inception_4b/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4b/pool_proj"
type: "Convolution"
bottom: "inception_4b/pool"
top: "inception_4b/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_pool_proj"
type: "ReLU"
bottom: "inception_4b/pool_proj"
top: "inception_4b/pool_proj"
}
layer {
name: "inception_4b/output"
type: "Concat"
bottom: "inception_4b/1x1"
bottom: "inception_4b/3x3"
bottom: "inception_4b/5x5"
bottom: "inception_4b/pool_proj"
top: "inception_4b/output"
}
layer {
name: "inception_4c/1x1"
type: "Convolution"
bottom: "inception_4b/output"
top: "inception_4c/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_1x1"
type: "ReLU"
bottom: "inception_4c/1x1"
top: "inception_4c/1x1"
}
layer {
name: "inception_4c/3x3_reduce"
type: "Convolution"
bottom: "inception_4b/output"
top: "inception_4c/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4c/3x3_reduce"
top: "inception_4c/3x3_reduce"
}
layer {
name: "inception_4c/3x3"
type: "Convolution"
bottom: "inception_4c/3x3_reduce"
top: "inception_4c/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_3x3"
type: "ReLU"
bottom: "inception_4c/3x3"
top: "inception_4c/3x3"
}
layer {
name: "inception_4c/5x5_reduce"
type: "Convolution"
bottom: "inception_4b/output"
top: "inception_4c/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4c/5x5_reduce"
top: "inception_4c/5x5_reduce"
}
layer {
name: "inception_4c/5x5"
type: "Convolution"
bottom: "inception_4c/5x5_reduce"
top: "inception_4c/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_5x5"
type: "ReLU"
bottom: "inception_4c/5x5"
top: "inception_4c/5x5"
}
layer {
name: "inception_4c/pool"
type: "Pooling"
bottom: "inception_4b/output"
top: "inception_4c/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4c/pool_proj"
type: "Convolution"
bottom: "inception_4c/pool"
top: "inception_4c/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_pool_proj"
type: "ReLU"
bottom: "inception_4c/pool_proj"
top: "inception_4c/pool_proj"
}
layer {
name: "inception_4c/output"
type: "Concat"
bottom: "inception_4c/1x1"
bottom: "inception_4c/3x3"
bottom: "inception_4c/5x5"
bottom: "inception_4c/pool_proj"
top: "inception_4c/output"
}
layer {
name: "inception_4d/1x1"
type: "Convolution"
bottom: "inception_4c/output"
top: "inception_4d/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 112
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_1x1"
type: "ReLU"
bottom: "inception_4d/1x1"
top: "inception_4d/1x1"
}
layer {
name: "inception_4d/3x3_reduce"
type: "Convolution"
bottom: "inception_4c/output"
top: "inception_4d/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 144
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4d/3x3_reduce"
top: "inception_4d/3x3_reduce"
}
layer {
name: "inception_4d/3x3"
type: "Convolution"
bottom: "inception_4d/3x3_reduce"
top: "inception_4d/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 288
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_3x3"
type: "ReLU"
bottom: "inception_4d/3x3"
top: "inception_4d/3x3"
}
layer {
name: "inception_4d/5x5_reduce"
type: "Convolution"
bottom: "inception_4c/output"
top: "inception_4d/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4d/5x5_reduce"
top: "inception_4d/5x5_reduce"
}
layer {
name: "inception_4d/5x5"
type: "Convolution"
bottom: "inception_4d/5x5_reduce"
top: "inception_4d/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_5x5"
type: "ReLU"
bottom: "inception_4d/5x5"
top: "inception_4d/5x5"
}
layer {
name: "inception_4d/pool"
type: "Pooling"
bottom: "inception_4c/output"
top: "inception_4d/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4d/pool_proj"
type: "Convolution"
bottom: "inception_4d/pool"
top: "inception_4d/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_pool_proj"
type: "ReLU"
bottom: "inception_4d/pool_proj"
top: "inception_4d/pool_proj"
}
layer {
name: "inception_4d/output"
type: "Concat"
bottom: "inception_4d/1x1"
bottom: "inception_4d/3x3"
bottom: "inception_4d/5x5"
bottom: "inception_4d/pool_proj"
top: "inception_4d/output"
}
layer {
name: "inception_4e/1x1"
type: "Convolution"
bottom: "inception_4d/output"
top: "inception_4e/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_1x1"
type: "ReLU"
bottom: "inception_4e/1x1"
top: "inception_4e/1x1"
}
layer {
name: "inception_4e/3x3_reduce"
type: "Convolution"
bottom: "inception_4d/output"
top: "inception_4e/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 160
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4e/3x3_reduce"
top: "inception_4e/3x3_reduce"
}
layer {
name: "inception_4e/3x3"
type: "Convolution"
bottom: "inception_4e/3x3_reduce"
top: "inception_4e/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 320
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_3x3"
type: "ReLU"
bottom: "inception_4e/3x3"
top: "inception_4e/3x3"
}
layer {
name: "inception_4e/5x5_reduce"
type: "Convolution"
bottom: "inception_4d/output"
top: "inception_4e/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4e/5x5_reduce"
top: "inception_4e/5x5_reduce"
}
layer {
name: "inception_4e/5x5"
type: "Convolution"
bottom: "inception_4e/5x5_reduce"
top: "inception_4e/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_5x5"
type: "ReLU"
bottom: "inception_4e/5x5"
top: "inception_4e/5x5"
}
layer {
name: "inception_4e/pool"
type: "Pooling"
bottom: "inception_4d/output"
top: "inception_4e/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4e/pool_proj"
type: "Convolution"
bottom: "inception_4e/pool"
top: "inception_4e/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_pool_proj"
type: "ReLU"
bottom: "inception_4e/pool_proj"
top: "inception_4e/pool_proj"
}
layer {
name: "inception_4e/output"
type: "Concat"
bottom: "inception_4e/1x1"
bottom: "inception_4e/3x3"
bottom: "inception_4e/5x5"
bottom: "inception_4e/pool_proj"
top: "inception_4e/output"
}
layer {
name: "pool4/3x3_s2"
type: "Pooling"
bottom: "inception_4e/output"
top: "pool4/3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_5a/1x1"
type: "Convolution"
bottom: "pool4/3x3_s2"
top: "inception_5a/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a/relu_1x1"
type: "ReLU"
bottom: "inception_5a/1x1"
top: "inception_5a/1x1"
}
layer {
name: "inception_5a/3x3_reduce"
type: "Convolution"
bottom: "pool4/3x3_s2"
top: "inception_5a/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 160
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_5a/3x3_reduce"
top: "inception_5a/3x3_reduce"
}
layer {
name: "inception_5a/3x3"
type: "Convolution"
bottom: "inception_5a/3x3_reduce"
top: "inception_5a/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 320
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a/relu_3x3"
type: "ReLU"
bottom: "inception_5a/3x3"
top: "inception_5a/3x3"
}
layer {
name: "inception_5a/5x5_reduce"
type: "Convolution"
bottom: "pool4/3x3_s2"
top: "inception_5a/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_5a/5x5_reduce"
top: "inception_5a/5x5_reduce"
}
layer {
name: "inception_5a/5x5"
type: "Convolution"
bottom: "inception_5a/5x5_reduce"
top: "inception_5a/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a/relu_5x5"
type: "ReLU"
bottom: "inception_5a/5x5"
top: "inception_5a/5x5"
}
layer {
name: "inception_5a/pool"
type: "Pooling"
bottom: "pool4/3x3_s2"
top: "inception_5a/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_5a/pool_proj"
type: "Convolution"
bottom: "inception_5a/pool"
top: "inception_5a/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a/relu_pool_proj"
type: "ReLU"
bottom: "inception_5a/pool_proj"
top: "inception_5a/pool_proj"
}
layer {
name: "inception_5a/output"
type: "Concat"
bottom: "inception_5a/1x1"
bottom: "inception_5a/3x3"
bottom: "inception_5a/5x5"
bottom: "inception_5a/pool_proj"
top: "inception_5a/output"
}
layer {
name: "inception_5b/1x1"
type: "Convolution"
bottom: "inception_5a/output"
top: "inception_5b/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b/relu_1x1"
type: "ReLU"
bottom: "inception_5b/1x1"
top: "inception_5b/1x1"
}
layer {
name: "inception_5b/3x3_reduce"
type: "Convolution"
bottom: "inception_5a/output"
top: "inception_5b/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.09
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_5b/3x3_reduce"
top: "inception_5b/3x3_reduce"
}
layer {
name: "inception_5b/3x3"
type: "Convolution"
bottom: "inception_5b/3x3_reduce"
top: "inception_5b/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b/relu_3x3"
type: "ReLU"
bottom: "inception_5b/3x3"
top: "inception_5b/3x3"
}
layer {
name: "inception_5b/5x5_reduce"
type: "Convolution"
bottom: "inception_5a/output"
top: "inception_5b/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 48
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.2
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_5b/5x5_reduce"
top: "inception_5b/5x5_reduce"
}
layer {
name: "inception_5b/5x5"
type: "Convolution"
bottom: "inception_5b/5x5_reduce"
top: "inception_5b/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b/relu_5x5"
type: "ReLU"
bottom: "inception_5b/5x5"
top: "inception_5b/5x5"
}
layer {
name: "inception_5b/pool"
type: "Pooling"
bottom: "inception_5a/output"
top: "inception_5b/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_5b/pool_proj"
type: "Convolution"
bottom: "inception_5b/pool"
top: "inception_5b/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b/relu_pool_proj"
type: "ReLU"
bottom: "inception_5b/pool_proj"
top: "inception_5b/pool_proj"
}
layer {
name: "inception_5b/output"
type: "Concat"
bottom: "inception_5b/1x1"
bottom: "inception_5b/3x3"
bottom: "inception_5b/5x5"
bottom: "inception_5b/pool_proj"
top: "inception_5b/output"
}
layer {
name: "pool5/7x7_s1"
type: "Pooling"
bottom: "inception_5b/output"
top: "pool5/7x7_s1"
pooling_param {
pool: AVE
kernel_size: 7
stride: 1
}
}
layer {
name: "pool5/drop_7x7_s1"
type: "Dropout"
bottom: "pool5/7x7_s1"
top: "pool5/7x7_s1"
dropout_param {
dropout_ratio: 0.4
}
}
layer {
name: "loss3/classifier_zzzz"
type: "InnerProduct"
bottom: "pool5/7x7_s1"
top: "loss3/classifier_zzzz"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 94
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "loss3/classifier_zzzz"
top: "prob"
}
net: "train_val.prototxt"
test_iter: 10
test_interval: 10000
test_initialization: false
display: 20
base_lr: 0.0005
lr_policy: "step"
stepsize: 25000
gamma: 0.96
max_iter: 200000
momentum: 0.9
weight_decay: 0.0002
snapshot: 5000
snapshot_prefix: "MYNET"
solver_mode: GPU
name: "MYNET"
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: false
crop_size: 224
mean_value: 85
mean_value: 99
mean_value: 129
}
image_data_param {
source: "train.txt"
batch_size: 40
shuffle: true
}
}
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 224
mean_value: 85
mean_value: 99
mean_value: 129
}
image_data_param {
source: "val.txt"
batch_size: 5
shuffle: true
}
}
layer {
name: "conv1/7x7_s2"
type: "Convolution"
bottom: "data"
top: "conv1/7x7_s2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 3
kernel_size: 7
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv1/relu_7x7"
type: "ReLU"
bottom: "conv1/7x7_s2"
top: "conv1/7x7_s2"
}
layer {
name: "pool1/3x3_s2"
type: "Pooling"
bottom: "conv1/7x7_s2"
top: "pool1/3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "pool1/norm1"
type: "LRN"
bottom: "pool1/3x3_s2"
top: "pool1/norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2/3x3_reduce"
type: "Convolution"
bottom: "pool1/norm1"
top: "conv2/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv2/relu_3x3_reduce"
type: "ReLU"
bottom: "conv2/3x3_reduce"
top: "conv2/3x3_reduce"
}
layer {
name: "conv2/3x3"
type: "Convolution"
bottom: "conv2/3x3_reduce"
top: "conv2/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv2/relu_3x3"
type: "ReLU"
bottom: "conv2/3x3"
top: "conv2/3x3"
}
layer {
name: "conv2/norm2"
type: "LRN"
bottom: "conv2/3x3"
top: "conv2/norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2/3x3_s2"
type: "Pooling"
bottom: "conv2/norm2"
top: "pool2/3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_3a/1x1"
type: "Convolution"
bottom: "pool2/3x3_s2"
top: "inception_3a/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_1x1"
type: "ReLU"
bottom: "inception_3a/1x1"
top: "inception_3a/1x1"
}
layer {
name: "inception_3a/3x3_reduce"
type: "Convolution"
bottom: "pool2/3x3_s2"
top: "inception_3a/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_3a/3x3_reduce"
top: "inception_3a/3x3_reduce"
}
layer {
name: "inception_3a/3x3"
type: "Convolution"
bottom: "inception_3a/3x3_reduce"
top: "inception_3a/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_3x3"
type: "ReLU"
bottom: "inception_3a/3x3"
top: "inception_3a/3x3"
}
layer {
name: "inception_3a/5x5_reduce"
type: "Convolution"
bottom: "pool2/3x3_s2"
top: "inception_3a/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_3a/5x5_reduce"
top: "inception_3a/5x5_reduce"
}
layer {
name: "inception_3a/5x5"
type: "Convolution"
bottom: "inception_3a/5x5_reduce"
top: "inception_3a/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_5x5"
type: "ReLU"
bottom: "inception_3a/5x5"
top: "inception_3a/5x5"
}
layer {
name: "inception_3a/pool"
type: "Pooling"
bottom: "pool2/3x3_s2"
top: "inception_3a/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_3a/pool_proj"
type: "Convolution"
bottom: "inception_3a/pool"
top: "inception_3a/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a/relu_pool_proj"
type: "ReLU"
bottom: "inception_3a/pool_proj"
top: "inception_3a/pool_proj"
}
layer {
name: "inception_3a/output"
type: "Concat"
bottom: "inception_3a/1x1"
bottom: "inception_3a/3x3"
bottom: "inception_3a/5x5"
bottom: "inception_3a/pool_proj"
top: "inception_3a/output"
}
layer {
name: "inception_3b/1x1"
type: "Convolution"
bottom: "inception_3a/output"
top: "inception_3b/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_1x1"
type: "ReLU"
bottom: "inception_3b/1x1"
top: "inception_3b/1x1"
}
layer {
name: "inception_3b/3x3_reduce"
type: "Convolution"
bottom: "inception_3a/output"
top: "inception_3b/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_3b/3x3_reduce"
top: "inception_3b/3x3_reduce"
}
layer {
name: "inception_3b/3x3"
type: "Convolution"
bottom: "inception_3b/3x3_reduce"
top: "inception_3b/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_3x3"
type: "ReLU"
bottom: "inception_3b/3x3"
top: "inception_3b/3x3"
}
layer {
name: "inception_3b/5x5_reduce"
type: "Convolution"
bottom: "inception_3a/output"
top: "inception_3b/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_3b/5x5_reduce"
top: "inception_3b/5x5_reduce"
}
layer {
name: "inception_3b/5x5"
type: "Convolution"
bottom: "inception_3b/5x5_reduce"
top: "inception_3b/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_5x5"
type: "ReLU"
bottom: "inception_3b/5x5"
top: "inception_3b/5x5"
}
layer {
name: "inception_3b/pool"
type: "Pooling"
bottom: "inception_3a/output"
top: "inception_3b/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_3b/pool_proj"
type: "Convolution"
bottom: "inception_3b/pool"
top: "inception_3b/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b/relu_pool_proj"
type: "ReLU"
bottom: "inception_3b/pool_proj"
top: "inception_3b/pool_proj"
}
layer {
name: "inception_3b/output"
type: "Concat"
bottom: "inception_3b/1x1"
bottom: "inception_3b/3x3"
bottom: "inception_3b/5x5"
bottom: "inception_3b/pool_proj"
top: "inception_3b/output"
}
layer {
name: "pool3/3x3_s2"
type: "Pooling"
bottom: "inception_3b/output"
top: "pool3/3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_4a/1x1"
type: "Convolution"
bottom: "pool3/3x3_s2"
top: "inception_4a/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_1x1"
type: "ReLU"
bottom: "inception_4a/1x1"
top: "inception_4a/1x1"
}
layer {
name: "inception_4a/3x3_reduce"
type: "Convolution"
bottom: "pool3/3x3_s2"
top: "inception_4a/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4a/3x3_reduce"
top: "inception_4a/3x3_reduce"
}
layer {
name: "inception_4a/3x3"
type: "Convolution"
bottom: "inception_4a/3x3_reduce"
top: "inception_4a/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 208
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_3x3"
type: "ReLU"
bottom: "inception_4a/3x3"
top: "inception_4a/3x3"
}
layer {
name: "inception_4a/5x5_reduce"
type: "Convolution"
bottom: "pool3/3x3_s2"
top: "inception_4a/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4a/5x5_reduce"
top: "inception_4a/5x5_reduce"
}
layer {
name: "inception_4a/5x5"
type: "Convolution"
bottom: "inception_4a/5x5_reduce"
top: "inception_4a/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 48
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_5x5"
type: "ReLU"
bottom: "inception_4a/5x5"
top: "inception_4a/5x5"
}
layer {
name: "inception_4a/pool"
type: "Pooling"
bottom: "pool3/3x3_s2"
top: "inception_4a/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4a/pool_proj"
type: "Convolution"
bottom: "inception_4a/pool"
top: "inception_4a/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a/relu_pool_proj"
type: "ReLU"
bottom: "inception_4a/pool_proj"
top: "inception_4a/pool_proj"
}
layer {
name: "inception_4a/output"
type: "Concat"
bottom: "inception_4a/1x1"
bottom: "inception_4a/3x3"
bottom: "inception_4a/5x5"
bottom: "inception_4a/pool_proj"
top: "inception_4a/output"
}
layer {
name: "loss1/ave_pool"
type: "Pooling"
bottom: "inception_4a/output"
top: "loss1/ave_pool"
pooling_param {
pool: AVE
kernel_size: 5
stride: 3
}
}
layer {
name: "loss1/conv"
type: "Convolution"
bottom: "loss1/ave_pool"
top: "loss1/conv"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "loss1/relu_conv"
type: "ReLU"
bottom: "loss1/conv"
top: "loss1/conv"
}
layer {
name: "loss1/fc"
type: "InnerProduct"
bottom: "loss1/conv"
top: "loss1/fc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "loss1/relu_fc"
type: "ReLU"
bottom: "loss1/fc"
top: "loss1/fc"
}
layer {
name: "loss1/drop_fc"
type: "Dropout"
bottom: "loss1/fc"
top: "loss1/fc"
dropout_param {
dropout_ratio: 0.7
}
}
layer {
name: "loss1/classifier_zzzz"
type: "InnerProduct"
bottom: "loss1/fc"
top: "loss1/classifier_zzzz"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 94
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss1/loss"
type: "SoftmaxWithLoss"
bottom: "loss1/classifier_zzzz"
bottom: "label"
top: "loss1/loss1"
loss_weight: 0.3
}
layer {
name: "loss1/top-1"
type: "Accuracy"
bottom: "loss1/classifier_zzzz"
bottom: "label"
top: "loss1/top-1"
include {
phase: TEST
}
}
layer {
name: "loss1/top-5"
type: "Accuracy"
bottom: "loss1/classifier_zzzz"
bottom: "label"
top: "loss1/top-5"
include {
phase: TEST
}
accuracy_param {
top_k: 5
}
}
layer {
name: "inception_4b/1x1"
type: "Convolution"
bottom: "inception_4a/output"
top: "inception_4b/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 160
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_1x1"
type: "ReLU"
bottom: "inception_4b/1x1"
top: "inception_4b/1x1"
}
layer {
name: "inception_4b/3x3_reduce"
type: "Convolution"
bottom: "inception_4a/output"
top: "inception_4b/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 112
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4b/3x3_reduce"
top: "inception_4b/3x3_reduce"
}
layer {
name: "inception_4b/3x3"
type: "Convolution"
bottom: "inception_4b/3x3_reduce"
top: "inception_4b/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 224
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_3x3"
type: "ReLU"
bottom: "inception_4b/3x3"
top: "inception_4b/3x3"
}
layer {
name: "inception_4b/5x5_reduce"
type: "Convolution"
bottom: "inception_4a/output"
top: "inception_4b/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4b/5x5_reduce"
top: "inception_4b/5x5_reduce"
}
layer {
name: "inception_4b/5x5"
type: "Convolution"
bottom: "inception_4b/5x5_reduce"
top: "inception_4b/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_5x5"
type: "ReLU"
bottom: "inception_4b/5x5"
top: "inception_4b/5x5"
}
layer {
name: "inception_4b/pool"
type: "Pooling"
bottom: "inception_4a/output"
top: "inception_4b/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4b/pool_proj"
type: "Convolution"
bottom: "inception_4b/pool"
top: "inception_4b/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b/relu_pool_proj"
type: "ReLU"
bottom: "inception_4b/pool_proj"
top: "inception_4b/pool_proj"
}
layer {
name: "inception_4b/output"
type: "Concat"
bottom: "inception_4b/1x1"
bottom: "inception_4b/3x3"
bottom: "inception_4b/5x5"
bottom: "inception_4b/pool_proj"
top: "inception_4b/output"
}
layer {
name: "inception_4c/1x1"
type: "Convolution"
bottom: "inception_4b/output"
top: "inception_4c/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_1x1"
type: "ReLU"
bottom: "inception_4c/1x1"
top: "inception_4c/1x1"
}
layer {
name: "inception_4c/3x3_reduce"
type: "Convolution"
bottom: "inception_4b/output"
top: "inception_4c/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4c/3x3_reduce"
top: "inception_4c/3x3_reduce"
}
layer {
name: "inception_4c/3x3"
type: "Convolution"
bottom: "inception_4c/3x3_reduce"
top: "inception_4c/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_3x3"
type: "ReLU"
bottom: "inception_4c/3x3"
top: "inception_4c/3x3"
}
layer {
name: "inception_4c/5x5_reduce"
type: "Convolution"
bottom: "inception_4b/output"
top: "inception_4c/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4c/5x5_reduce"
top: "inception_4c/5x5_reduce"
}
layer {
name: "inception_4c/5x5"
type: "Convolution"
bottom: "inception_4c/5x5_reduce"
top: "inception_4c/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_5x5"
type: "ReLU"
bottom: "inception_4c/5x5"
top: "inception_4c/5x5"
}
layer {
name: "inception_4c/pool"
type: "Pooling"
bottom: "inception_4b/output"
top: "inception_4c/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4c/pool_proj"
type: "Convolution"
bottom: "inception_4c/pool"
top: "inception_4c/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c/relu_pool_proj"
type: "ReLU"
bottom: "inception_4c/pool_proj"
top: "inception_4c/pool_proj"
}
layer {
name: "inception_4c/output"
type: "Concat"
bottom: "inception_4c/1x1"
bottom: "inception_4c/3x3"
bottom: "inception_4c/5x5"
bottom: "inception_4c/pool_proj"
top: "inception_4c/output"
}
layer {
name: "inception_4d/1x1"
type: "Convolution"
bottom: "inception_4c/output"
top: "inception_4d/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 112
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_1x1"
type: "ReLU"
bottom: "inception_4d/1x1"
top: "inception_4d/1x1"
}
layer {
name: "inception_4d/3x3_reduce"
type: "Convolution"
bottom: "inception_4c/output"
top: "inception_4d/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 144
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4d/3x3_reduce"
top: "inception_4d/3x3_reduce"
}
layer {
name: "inception_4d/3x3"
type: "Convolution"
bottom: "inception_4d/3x3_reduce"
top: "inception_4d/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 288
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_3x3"
type: "ReLU"
bottom: "inception_4d/3x3"
top: "inception_4d/3x3"
}
layer {
name: "inception_4d/5x5_reduce"
type: "Convolution"
bottom: "inception_4c/output"
top: "inception_4d/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4d/5x5_reduce"
top: "inception_4d/5x5_reduce"
}
layer {
name: "inception_4d/5x5"
type: "Convolution"
bottom: "inception_4d/5x5_reduce"
top: "inception_4d/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_5x5"
type: "ReLU"
bottom: "inception_4d/5x5"
top: "inception_4d/5x5"
}
layer {
name: "inception_4d/pool"
type: "Pooling"
bottom: "inception_4c/output"
top: "inception_4d/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4d/pool_proj"
type: "Convolution"
bottom: "inception_4d/pool"
top: "inception_4d/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d/relu_pool_proj"
type: "ReLU"
bottom: "inception_4d/pool_proj"
top: "inception_4d/pool_proj"
}
layer {
name: "inception_4d/output"
type: "Concat"
bottom: "inception_4d/1x1"
bottom: "inception_4d/3x3"
bottom: "inception_4d/5x5"
bottom: "inception_4d/pool_proj"
top: "inception_4d/output"
}
layer {
name: "loss2/ave_pool"
type: "Pooling"
bottom: "inception_4d/output"
top: "loss2/ave_pool"
pooling_param {
pool: AVE
kernel_size: 5
stride: 3
}
}
layer {
name: "loss2/conv"
type: "Convolution"
bottom: "loss2/ave_pool"
top: "loss2/conv"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "loss2/relu_conv"
type: "ReLU"
bottom: "loss2/conv"
top: "loss2/conv"
}
layer {
name: "loss2/fc"
type: "InnerProduct"
bottom: "loss2/conv"
top: "loss2/fc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "loss2/relu_fc"
type: "ReLU"
bottom: "loss2/fc"
top: "loss2/fc"
}
layer {
name: "loss2/drop_fc"
type: "Dropout"
bottom: "loss2/fc"
top: "loss2/fc"
dropout_param {
dropout_ratio: 0.7
}
}
layer {
name: "loss2/classifier_zzzz"
type: "InnerProduct"
bottom: "loss2/fc"
top: "loss2/classifier_zzzz"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 94
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss2/loss"
type: "SoftmaxWithLoss"
bottom: "loss2/classifier_zzzz"
bottom: "label"
top: "loss2/loss1"
loss_weight: 0.3
}
layer {
name: "loss2/top-1"
type: "Accuracy"
bottom: "loss2/classifier_zzzz"
bottom: "label"
top: "loss2/top-1"
include {
phase: TEST
}
}
layer {
name: "loss2/top-5"
type: "Accuracy"
bottom: "loss2/classifier_zzzz"
bottom: "label"
top: "loss2/top-5"
include {
phase: TEST
}
accuracy_param {
top_k: 5
}
}
layer {
name: "inception_4e/1x1"
type: "Convolution"
bottom: "inception_4d/output"
top: "inception_4e/1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_1x1"
type: "ReLU"
bottom: "inception_4e/1x1"
top: "inception_4e/1x1"
}
layer {
name: "inception_4e/3x3_reduce"
type: "Convolution"
bottom: "inception_4d/output"
top: "inception_4e/3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 160
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4e/3x3_reduce"
top: "inception_4e/3x3_reduce"
}
layer {
name: "inception_4e/3x3"
type: "Convolution"
bottom: "inception_4e/3x3_reduce"
top: "inception_4e/3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 320
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_3x3"
type: "ReLU"
bottom: "inception_4e/3x3"
top: "inception_4e/3x3"
}
layer {
name: "inception_4e/5x5_reduce"
type: "Convolution"
bottom: "inception_4d/output"
top: "inception_4e/5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4e/5x5_reduce"
top: "inception_4e/5x5_reduce"
}
layer {
name: "inception_4e/5x5"
type: "Convolution"
bottom: "inception_4e/5x5_reduce"
top: "inception_4e/5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_5x5"
type: "ReLU"
bottom: "inception_4e/5x5"
top: "inception_4e/5x5"
}
layer {
name: "inception_4e/pool"
type: "Pooling"
bottom: "inception_4d/output"
top: "inception_4e/pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4e/pool_proj"
type: "Convolution"
bottom: "inception_4e/pool"
top: "inception_4e/pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e/relu_pool_proj"
type: "ReLU"
bottom: "inception_4e/pool_proj"
top: "inception_4e/pool_proj"
}
layer {
name: "inception_4e/output"
type: "Concat"
bottom: "inception_4e/1x1"
bottom: "inception_4e/3x3"
bottom: "inception_4e/5x5"
bottom: "inception_4e/pool_proj"
top: "inception_4e/output"
}
layer {
name: "pool4/3x3_s2"
type: "Pooling"
bottom: "inception_4e/output"
top: "pool4/3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2