-
-
Save ttchengab/9f31568ef1b916ab0ee74ac1b8b482e5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def pred_to_dict(text, pred, prob): | |
res = {"company": ("", 0), "date": ("", 0), "address": ("", 0), "total": ("", 0)} | |
keys = list(res.keys()) | |
seps = [0] + (np.nonzero(np.diff(pred))[0] + 1).tolist() + [len(pred)] | |
for i in range(len(seps) - 1): | |
pred_class = pred[seps[i]] - 1 | |
if pred_class == -1: | |
continue | |
new_key = keys[pred_class] | |
new_prob = prob[seps[i] : seps[i + 1]].max() | |
if new_prob > res[new_key][1]: | |
res[new_key] = (text[seps[i] : seps[i + 1]], new_prob) | |
return {k: regex.sub(r"[\t\n]", " ", v[0].strip()) for k, v in res.items()} | |
def test(model): | |
model.eval() | |
with torch.no_grad(): | |
oupt = model(text_tensor) | |
prob = torch.nn.functional.softmax(oupt, dim=2) | |
prob, pred = torch.max(prob, dim=2) | |
prob = prob.squeeze().cpu().numpy() | |
pred = pred.squeeze().cpu().numpy() | |
real_text = etfo | |
result = pred_to_dict(real_text, pred, prob) | |
with open("output.json", "w", encoding="utf-8") as json_opened: | |
json.dump(result, json_opened, indent=4) | |
return result |
Where does the text_tensor come from?
get_info() method returns etfo which is to be converted into text_tensor by using:
text_tensor = torch.zeros(len(etfo), 1, dtype=torch.long)
text_tensor[:, 0] = torch.LongTensor([VOCAB.find(c) for c in etfo])
text_tensor.to(device)
You will get text_tensor but I am still facing some index error when try to predict on my custom image. Kindly let know if this helps!!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Where does the text_tensor come from?