Last active
December 15, 2023 10:13
-
-
Save tunght13488/6744e77c242cc7a94859 to your computer and use it in GitHub Desktop.
quadratic bezier curve length in javascript
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* http://en.wikipedia.org/wiki/B%C3%A9zier_curve | |
* http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/g | |
*/ | |
function Point(x, y) { | |
this.x = x; | |
this.y = y; | |
} | |
function quadraticBezierLength(p0, p1, p2) { | |
var a = new Point( | |
p0.x - 2 * p1.x + p2.x, | |
p0.y - 2 * p1.y + p2.y | |
); | |
var b = new Point( | |
2 * p1.x - 2 * p0.x, | |
2 * p1.y - 2 * p0.y | |
); | |
var A = 4 * (a.x * a.x + a.y * a.y); | |
var B = 4 * (a.x * b.x + a.y * b.y); | |
var C = b.x * b.x + b.y * b.y; | |
var Sabc = 2 * sqrt(A+B+C); | |
var A_2 = sqrt(A); | |
var A_32 = 2 * A * A_2; | |
var C_2 = 2 * sqrt(C); | |
var BA = B / A_2; | |
return (A_32 * Sabc + A_2 * B * (Sabc - C_2) + (4 * C * A - B * B) * log((2 * A_2 + BA + Sabc) / (BA + C_2))) / (4 * A_32); | |
} |
how do you calculate the length for Bezier Curve in three dimensions? Is this the right approach? @steveruizok @chknoflach
function quadraticBezierLength(x1, y1, z1, x2, y2, z2, x3, y3, z3) {
let a, b, c, u
let v1x = x2 * 2
let v1y = y2 * 2
let v1z = z2 * 2
let d = x1 - v1x + x3
let d1 = y1 - v1y + y3
let d2 = z1 - v1z + z3
let e = v1x - 2 * x1
let e1 = v1y - 2 * y1
let e2 = v1z - 2 * z1
let c1 = (a = 4 * (d * d + d1 * d1 + d2 * d2))
c1 += b = 4 * (d * e + d1 * e1 + d2 * e2)
c1 += c = e * e + e1 * e1 + e2 * e2
c1 = 2 * Math.sqrt(c1)
let a1 = 2 * a * (u = Math.sqrt(a))
let u1 = b / u
a = 4 * c * a - b * b
c = 2 * Math.sqrt(c)
return (
(a1 * c1 + u * b * (c1 - c) + a * Math.log((2 * u + u1 + c1) / (u1 + c))) /
(4 * a1)
)
}
@chknoflach Yes but in the first case you mentioned, if P0 is (10, 10), P1 is (10.00001, 10.00012), P2 is (20, 20), the divisor will be so small and the division result will be so big, makes a poor precision as a double
number. It's annoying for me to process these points data from users drawing on a GUI.
As commented before, we should also check for actually linear commands:
/**
* p0: previous command's final point
* cp1: quadratic bézier control point
* p: final point
*/
function quadraticBezierLength(p0, cp1, p, t = 1) {
if (t === 0) {
return 0;
}
const interpolate = (p1, p2, t) => {
let pt = { x: (p2.x - p1.x) * t + p1.x, y: (p2.y - p1.y) * t + p1.y };
return pt;
}
const getLineLength = (p1, p2) => {
return Math.sqrt(
(p2.x - p1.x) * (p2.x - p1.x) + (p2.y - p1.y) * (p2.y - p1.y)
);
}
// is flat/linear
let l1 = getLineLength(p0, cp1) + getLineLength(cp1, p);
let l2 = getLineLength(p0, p);
if (l1 === l2) {
let m1 = interpolate(p0, cp1, t);
let m2 = interpolate(cp1, p, t);
p = interpolate(m1, m2, t);
let lengthL;
lengthL = Math.sqrt((p.x - p0.x) * (p.x - p0.x) + (p.y - p0.y) * (p.y - p0.y));
return lengthL;
}
let a, b, c, d, e, e1, d1, v1x, v1y;
v1x = cp1.x * 2;
v1y = cp1.y * 2;
d = p0.x - v1x + p.x;
d1 = p0.y - v1y + p.y;
e = v1x - 2 * p0.x;
e1 = v1y - 2 * p0.y;
a = 4 * (d * d + d1 * d1);
b = 4 * (d * e + d1 * e1);
c = e * e + e1 * e1;
const bt = b / (2 * a),
ct = c / a,
ut = t + bt,
k = ct - bt ** 2;
return (
(Math.sqrt(a) / 2) *
(ut * Math.sqrt(ut ** 2 + k) -
bt * Math.sqrt(bt ** 2 + k) +
k *
Math.log((ut + Math.sqrt(ut ** 2 + k)) / (bt + Math.sqrt(bt ** 2 + k))))
);
}
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you for this code, it works beautifully. I stumbled upon two edge cases that I had to handle:
as in both control points are on the same point along a straight line. In this case, (BA + C_2), which is used as a divisor, is zero, resulting in a division by zero. To handle this:
If all three points are passed as {0,0}, A_32 ends up as zero, resulting in a division by zero. To handle this:
Note that JavaScript does not throw errors or warnings because it evaluates divisions by zero to "Infinity", which then results in NaN when used in further calculations. So what you end up with is the function returning "NaN" if the edge cases are not handled.