Skip to content

Instantly share code, notes, and snippets.

@tupui
Last active July 20, 2021 17:37
Show Gist options
  • Save tupui/ee6e685219c06c429338569e7ee7ff2a to your computer and use it in GitHub Desktop.
Save tupui/ee6e685219c06c429338569e7ee7ff2a to your computer and use it in GitHub Desktop.
Integration convergence using Halton sequence: scrambling effect
"""Integration convergence using Halton sequence: scrambling effect.
Compute the convergence rate for integrating functions using Halton low
discrepancy sequence [1]_. We are interested in the effect of scrambling [2]_.
Two sets of functions are considered:
(i) The first set of functions are synthetic examples specifically designed
to verify the correctness of the implementation [4]_.
(ii) The second set is categorized into types A, B and C [3]_. These categories
state how the variables are important with respect to the function output:
- type A, Functions with a low number of important variables,
- type B, Functions with almost equally important variables but with
low interactions with each other,
- type C, Functions with almost equally important variables and with
high interactions with each other.
The theoretical integral for these functions in the unit hypercube is 1.
Quality of the integration is computed using the Root Mean Square Error (RMSE).
.. note:: This script relies on Scipy >= 1.7. Pull Request:
https://github.com/scipy/scipy/pull/10844
References
----------
.. [1] Halton, "On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals", Numerische
Mathematik, 1960.
.. [2] A. B. Owen. "A randomized Halton algorithm in R",
arXiv:1706.02808, 2017.
.. [3] Sergei Kucherenko and Daniel Albrecht and Andrea Saltelli. Exploring
multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte
Carlo Sampling Techniques. arXiv 1505.02350, 2015.
.. [4] Art B. Owen. On dropping the first Sobol' point. arXiv 2008.08051,
2020.
---------------------------
MIT License
Copyright (c) 2020 Pamphile Tupui ROY
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import os
from collections import namedtuple
import numpy as np
from scipy.stats import qmc
import matplotlib.pyplot as plt
from matplotlib.container import ErrorbarContainer
from matplotlib.legend_handler import HandlerErrorbar
path = 'halton_convergence/int'
os.makedirs(path, exist_ok=True)
generate = True
n_conv = 50
ns_gen = np.arange(1, 1000, 5)
# Functions definitions
_exp1 = 1 - np.exp(1)
def art_1(sample):
# dim 5, true value 0
return np.sum(np.exp(sample) + _exp1, axis=1)
def art_2(sample):
# dim 5, true value 5/3 + 5*(5 - 1)/4
return np.sum(sample, axis=1) ** 2
def art_3(sample):
# dim 3, true value 0
return np.prod(np.exp(sample) + _exp1, axis=1)
def type_a(sample, dim=30):
# true value 1
a = np.arange(1, dim + 1)
f = 1.
for i in range(dim):
f *= (abs(4. * sample[:, i] - 2) + a[i]) / (1. + a[i])
return f
def type_b(sample, dim=30):
# true value 1
f = 1.
for d in range(1, dim + 1):
f *= (d - sample[:, d - 1]) / (d - 0.5)
return f
def type_c(sample, dim=10):
# true value 1
f = 2 ** dim * np.prod(sample, axis=1)
return f
functions = namedtuple('functions', ['name', 'func', 'dim', 'ref'])
benchmark = [
functions('Art 1', art_1, 5, 0),
functions('Art 2', art_2, 5, 5 / 3 + 5 * (5 - 1) / 4),
functions('Art 3', art_3, 3, 0),
functions('Type A', type_a, 30, 1),
functions('Type B', type_b, 30, 1),
functions('Type C', type_c, 10, 1)
]
def conv_method(sampler, func, n_samples, n_conv, ref):
samples = [sampler(n_samples) for _ in range(n_conv)]
samples = np.array(samples)
evals = [np.sum(func(sample)) / n_samples for sample in samples]
squared_errors = (ref - np.array(evals)) ** 2
rmse = (np.sum(squared_errors) / n_conv) ** 0.5
return rmse, 0. # can add another metric
# Analysis
if generate:
sample_mc_rmse = []
sample_halton = []
sample_halton_0 = []
for ns in ns_gen:
print(f'-> ns={ns}')
_sample_mc_rmse = []
_sample_halton = []
_sample_halton_0 = []
for case in benchmark:
# Monte Carlo
sampler_mc = lambda x: np.random.random((x, case.dim))
conv_res = conv_method(sampler_mc, case.func, ns, n_conv, case.ref)
_sample_mc_rmse.append(conv_res)
# Halton
engine = qmc.Halton(d=case.dim, scramble=False)
conv_res = conv_method(engine.random, case.func, ns, 1, case.ref)
_sample_halton.append(conv_res)
# Halton scrambled
def _sampler_halton_0(ns):
engine = qmc.Halton(d=case.dim, scramble=True)
return engine.random(ns)
conv_res = conv_method(_sampler_halton_0, case.func, ns, n_conv, case.ref)
_sample_halton_0.append(conv_res)
sample_mc_rmse.append(_sample_mc_rmse)
sample_halton.append(_sample_halton)
sample_halton_0.append(_sample_halton_0)
np.save(os.path.join(path, 'mc.npy'), sample_mc_rmse)
np.save(os.path.join(path, 'halton.npy'), sample_halton)
np.save(os.path.join(path, 'halton_0.npy'), sample_halton_0)
else:
sample_mc_rmse = np.load(os.path.join(path, 'mc.npy'))
sample_halton = np.load(os.path.join(path, 'halton.npy'))
sample_halton_0 = np.load(os.path.join(path, 'halton_0.npy'))
sample_mc_rmse = np.array(sample_mc_rmse)
sample_halton = np.array(sample_halton)
sample_halton_0 = np.array(sample_halton_0)
# Plot
for i, case in enumerate(benchmark):
func = case.name
fig, ax = plt.subplots()
ratio_1 = sample_halton[:, i, 0][0] / ns_gen[0] ** (-1/2)
ratio_2 = sample_halton_0[:, i, 0][0] / ns_gen[0] ** (-2/2)
ax.plot(ns_gen, ns_gen ** (-1/2) * ratio_1, ls='-', c='k')
ax.plot(ns_gen, ns_gen ** (-2/2) * ratio_2, ls='-', c='k')
ax.plot(ns_gen, sample_halton[:, i, 0],
ls=':', label="Halton unscrambled")
ax.plot(ns_gen, sample_halton_0[:, i, 0],
ls='-', label="Halton scrambled")
ax.set_xlabel(r'$N_s$')
ax.set_ylabel(r'$\epsilon$')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xticks([1, 5, 10, 50, 100, 500, 1000])
ax.set_xticklabels([1, 5, 10, 50, 100, 500, 1000])
fig.legend(labelspacing=0.7, bbox_to_anchor=(0.5, 0.43),
handler_map={ErrorbarContainer: HandlerErrorbar(xerr_size=0.7)})
fig.tight_layout()
#plt.show()
fig.savefig(os.path.join(path, f'halton_conv_integration_{func}.png'),
transparent=True, bbox_inches='tight')
@tupui
Copy link
Author

tupui commented Sep 13, 2020

For instance, Art2:

halton_conv_integration_Art 2

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment