Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
class BayesianModel(object):
samples = 2000
def __init__(self, cache_model=True):
self.cached_model = None
self.cached_start = None
self.cached_sampler = None
self.shared_vars = {}
def cache_model(self, **inputs):
self.shared_vars = self._create_shared_vars(**inputs)
self.cached_model = self.create_model(**self.shared_vars)
def create_model(self, **inputs):
raise NotImplementedError('This method has to be overwritten.')
def _create_shared_vars(self, **inputs):
shared_vars = {}
for name, data in inputs.items():
shared_vars[name] = shared(np.asarray(data), name=name)
return shared_vars
def run(self, reinit=True, **inputs):
if self.cached_model is None:
for name, data in inputs.items():
trace = self._inference(reinit=reinit)
return trace
def _inference(self, reinit=True):
with self.cached_model:
if reinit or (self.cached_start is None) or (self.cached_sampler is None):
self.cached_start = pm.find_MAP(fmin=sp.optimize.fmin_powell)
self.cached_sampler = pm.NUTS(scaling=self.cached_start)
trace = pm.sample(self.samples, self.cached_sampler, start=self.cached_start)
return trace
class BEST(BayesianModel):
"""Bayesian Estimation Supersedes the T-Test
This model replicates the example used in:
Kruschke, John. (2012) Bayesian estimation supersedes the t
test. Journal of Experimental Psychology: General.
The original pymc2 implementation was written by Andrew Straw and
can be found here:
Ported to PyMC3 by Thomas Wiecki (c) 2015.
def create_model(self, y1=None, y2=None):
y = pm.concatenate((y1, y2))
mu_m = T.mean(y)
mu_p = 0.000001 * 1 / y.std()**2
sigma_low = y.std()/1000
sigma_high = y.std()*1000
with pm.Model() as model:
group1_mean = pm.Normal('group1_mean', mu=mu_m, tau=mu_p,
group2_mean = pm.Normal('group2_mean', mu=mu_m, tau=mu_p,
group1_std = pm.Uniform('group1_std', lower=sigma_low,
upper=sigma_high, testval=y1.std())
group2_std = pm.Uniform('group2_std', lower=sigma_low,
upper=sigma_high, testval=y2.std())
nu = pm.Exponential('nu_minus_two', 1 / 29., testval=4.) + 2.
returns_group1 = pm.StudentT('group1', nu=nu, mu=group1_mean,
lam=group1_std**-2, observed=y1)
returns_group2 = pm.StudentT('group2', nu=nu, mu=group2_mean,
lam=group2_std**-2, observed=y2)
diff_of_means = pm.Deterministic('difference of means',
group2_mean - group1_mean)
pm.Deterministic('difference of stds',
group2_std - group1_std)
pm.Deterministic('effect size', diff_of_means /
pm.sqrt((group1_std**2 +
group2_std**2) / 2))
returns_group1.distribution.variance**.5 *
returns_group2.distribution.variance**.5 *
pm.Deterministic('group1_sharpe', returns_group1.distribution.mean /
returns_group1.distribution.variance**.5 *
pm.Deterministic('group2_sharpe', returns_group2.distribution.mean /
returns_group2.distribution.variance**.5 *
return model
def analyze(self, trace=None, burn=200, ax1=None, ax2=None, ax3=None):
trace = trace[burn:]
if ax1 is None:
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 4))
sns.distplot(trace['group1_mean'], ax=ax1, label='backtest')
sns.distplot(trace['group2_mean'], ax=ax1, label='forward')
# sns.distplot(trace['difference of means'], ax=ax2)
# ax2.axvline(0, linestyle='-', color='k')
# ax2.axvline(
# stats.scoreatpercentile(trace['difference of means'], 2.5),
# linestyle='--', color='b', label='2.5 and 97.5 percentiles')
# ax2.axvline(
# stats.scoreatpercentile(trace['difference of means'], 97.5),
# linestyle='--', color='b')
# ax2.legend(loc=0)
sns.distplot(trace['effect size'], ax=ax2)
ax2.axvline(0, linestyle='-', color='k')
stats.scoreatpercentile(trace['effect size'], 2.5),
linestyle='--', color='b')
stats.scoreatpercentile(trace['effect size'], 97.5),
linestyle='--', color='b')
ax2.set_xlabel('difference of means')
ax2.set_xlabel('effect size')
best = BEST()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment