Skip to content

Instantly share code, notes, and snippets.

View twolfe18's full-sized avatar

Travis Wolfe twolfe18

  • Google
  • San Francisco
View GitHub Profile
@dmbates
dmbates / SimpleGibbs.md
Last active May 27, 2021 01:37
Simple Gibbs sampler in Julia

The Gibbs sampler discussed on Darren Wilkinson's blog and also on Dirk Eddelbuettel's blog has been implemented in several languages, the first of which was R.

The task is to create a Gibbs sampler for the unscaled density

 f(x,y) = x x^2 \exp(-xy^2 - y^2 + 2y - 4x)

using the conditional distributions

 x|y \sim Gamma(3, y^2 +4)

y|x \sim Normal(\frac{1}{1+x}, \frac{1}{2(1+x)})

@jboner
jboner / latency.txt
Last active July 7, 2024 09:23
Latency Numbers Every Programmer Should Know
Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
@hellerbarde
hellerbarde / latency.markdown
Created May 31, 2012 13:16 — forked from jboner/latency.txt
Latency numbers every programmer should know

Latency numbers every programmer should know

L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns             
Compress 1K bytes with Zippy ............. 3,000 ns  =   3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns  =  20 µs
SSD random read ........................ 150,000 ns  = 150 µs

Read 1 MB sequentially from memory ..... 250,000 ns = 250 µs