Skip to content

Instantly share code, notes, and snippets.

from keras.models import Sequential
from keras.layers import Dense
x, y = ...
x_val, y_val = ...
# 1-dimensional MSE linear regression in Keras
model = Sequential()
model.add(Dense(1, input_dim=x.shape[1]))
model.compile(optimizer='rmsprop', loss='mse')
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@unosonu
unosonu / tfpdf.py
Created June 22, 2017 11:23 — forked from bllchmbrs/tfpdf.py
TF IDF Explained in Python Along with Scikit-Learn Implementation
from __future__ import division
import string
import math
tokenize = lambda doc: doc.lower().split(" ")
document_0 = "China has a strong economy that is growing at a rapid pace. However politically it differs greatly from the US Economy."
document_1 = "At last, China seems serious about confronting an endemic problem: domestic violence and corruption."
document_2 = "Japan's prime minister, Shinzo Abe, is working towards healing the economic turmoil in his own country for his view on the future of his people."
document_3 = "Vladimir Putin is working hard to fix the economy in Russia as the Ruble has tumbled."