Skip to content

Instantly share code, notes, and snippets.

@usholanb
Created August 3, 2016 20:09
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save usholanb/ba4aa249993a6a903262ba1d4b2ac4a5 to your computer and use it in GitHub Desktop.
Save usholanb/ba4aa249993a6a903262ba1d4b2ac4a5 to your computer and use it in GitHub Desktop.
Python RNN with numpy only
#############################################################################
# Abstract: This code trains a model to predict next character based on
# the previous ones.
#
# More details:
# 1. Each character is represented as a vector of size 256. It is all
# zeros except the index where that characters stands in ASCII table.
# 2. Code divides the text on chunks of input_size.
# 3. The teaching labels of all the characters in a chunk are the next
# characters, so we just shift the chuck to the right and assign the
# last character to space(ASCII code - 32 in decimal)
# 4. The prediction of next character is based on the previous character
# and all the previous text which influence on prediction decision
# via the hidden layer.
# 5. After all the predictions are made, the gradient is calculated
# based on the errors.
#############################################################################
import numpy as np
import matplotlib.pyplot as plt
import pickle
hidden_layer_size = 100
character_size = 256
input_size = 20
learning_rate = 0.01
epsilon = 10 ** (-5)
epochus = 25
train_new = 1
training_file = open("christmas_carol.txt")
training_data = []
for line in training_file:
temp = list(line.strip())
for i in xrange(len(temp)):
temp[i] = ord(temp[i])
training_data += temp
temp = training_data
training_labels = temp[1:] + [32]
training_data = np.zeros((len(temp), character_size))
training_data[xrange(len(temp)), temp] = 1.0
training_file.close()
# W_xh = (100, 256)
wts_xh = np.random.uniform(-np.sqrt(1.0 / character_size), \
np.sqrt(1.0 / character_size), \
(hidden_layer_size, character_size))
# b_h = (256, 1)
bias_h = np.random.uniform(-np.sqrt(1.0 / hidden_layer_size), \
np.sqrt(1.0 / hidden_layer_size), \
(hidden_layer_size))
# W_hh = (100, 100)
wts_hh = np.random.uniform(-np.sqrt(1.0 / hidden_layer_size), \
np.sqrt(1.0 / hidden_layer_size), \
(hidden_layer_size, hidden_layer_size))
# b_o = (256, 1)
bias_o = np.random.uniform(-np.sqrt(1.0 / hidden_layer_size), \
np.sqrt(1.0 / hidden_layer_size), \
(character_size))
# W_ho = (256, 100)
wts_ho = np.random.uniform(-np.sqrt(1.0 / hidden_layer_size), \
np.sqrt(1.0 / hidden_layer_size), \
(character_size, hidden_layer_size))
m_wxh = np.zeros(wts_xh.shape)
m_bh = np.zeros(bias_h.shape)
m_whh = np.zeros(wts_hh.shape)
m_bo = np.zeros(bias_o.shape)
m_who = np.zeros(wts_ho.shape)
def softmax(x):
xt = np.exp(x - np.max(x))
return xt / np.sum(xt)
def total_loss(data, labels, wts_xh, wts_hh, wts_ho, bias_h, bias_o):
loss = 0.0
i = 0
while i + input_size <= len(data):
output, hidden = forward_prop(data[i:i+input_size], wts_xh,\
wts_hh, wts_ho, bias_h, bias_o)
predictions = output[np.arange(input_size), labels[i:i+input_size]]
loss += -1 * np.sum(np.log(predictions))
i += input_size
return loss / (i / input_size * 1.0)
def forward_prop(x, wts_xh, wts_hh, wts_ho, bias_h, bias_o):
T = len(x)
hidden_layers = np.zeros((T + 1, hidden_layer_size))
hidden_layers[-1] = np.zeros(hidden_layer_size)
outputs = np.zeros((T, character_size))
for t in range(T):
hidden_layers[t] = np.tanh(wts_xh[:,int(np.argmax(x[t]))] +
wts_hh.dot(hidden_layers[t]) + bias_h)
outputs[t] = softmax(wts_ho.dot(hidden_layers[t]) + bias_o)
return [outputs, hidden_layers]
def predict_sequence(x, wts_xh, wts_hh, wts_ho, bias_h, bias_o):
sequence = [chr(np.argmax(x))]
sequence_length = input_size
hidden_layers = np.zeros((sequence_length + 1, hidden_layer_size))
hidden_layers[-1] = np.zeros(hidden_layer_size)
outputs = np.zeros((sequence_length, character_size))
for t in range(sequence_length):
hidden_layers[t] = np.tanh(wts_xh[:, np.argmax(x)] +
wts_hh.dot(hidden_layers[t]) + bias_h)
outputs[t] = softmax(wts_ho.dot(hidden_layers[t]) + bias_o)
x = outputs[t]
for i in range(sequence_length):
flip = np.random.multinomial(1, outputs[i], size = 1)
c = np.argmax(flip)
sequence.append(chr(c))
return "".join(sequence)
epochs = 1
training_loss = []
training_epochs = []
if train_new == 1:
while epochs < epochus + 1:
i = 0 # Iterate through examples
loss = 0
while i + input_size < len(training_data):
#for t in range(input_size):
x = np.array(training_data[i:i+input_size])
y = np.array(training_labels[i:i+input_size])
T = len(y)
### Forward Prop ###
outputs, hidden_layers = forward_prop(x, wts_xh, wts_hh, wts_ho,
bias_h, bias_o)
### Back Propogation ###
# We accumulate the gradients in these variables:
g_wts_ho = np.zeros(wts_ho.shape)
g_wts_hh = np.zeros(wts_hh.shape)
g_bias_o = np.zeros(bias_o.shape)
g_bias_h = np.zeros(bias_h.shape)
g_wts_xh = np.zeros(wts_xh.shape)
# Delta for output layer: y-t (softmax)
delta_o = outputs
delta_o[np.arange(T), y] -= 1
# For each output backwards...
for t in np.arange(T)[::-1]:
g_bias_o += delta_o[t]
g_wts_ho += np.outer(delta_o[t], hidden_layers[t].T)
delta_h = wts_ho.T.dot(delta_o[t]) * (1- hidden_layers[t] ** 2)
# Backpropagation through time (for at most [truncate] steps)
# Add to gradients at each previous step
g_bias_h += delta_h
g_wts_hh += np.outer(delta_h, hidden_layers[t-1])
g_wts_xh += np.outer(delta_h, x[t].T)
# Update delta for next step at t-1
delta_h = wts_hh.T.dot(delta_h) * (1 - hidden_layers[t-1] ** 2)
for param in [g_wts_ho, g_wts_hh, g_wts_xh, g_bias_o, g_bias_h]:
np.clip(param, -5, 5, out = param)
### Weight updates ###
for param, dparam, mem, in zip([wts_xh, wts_hh, wts_ho, bias_h, bias_o],\
[g_wts_xh, g_wts_hh, g_wts_ho, g_bias_h, g_bias_o],\
[m_wxh, m_whh, m_who, m_bh, m_bo]):
mem += dparam * dparam
param += - learning_rate * dparam / np.sqrt(mem + 1e-8)
i += input_size # Next training example
loss = total_loss(training_data, training_labels, wts_xh, \
wts_hh, wts_ho, bias_h, bias_o)
print "epoch # ", epochs, " training_loss = ", loss
if epochs % 5 == 0:
print predict_sequence(np.array(training_data[3]), wts_xh, wts_hh, wts_ho,\
bias_h, bias_o)
training_loss.append(loss)
training_epochs.append(epochs)
epochs += 1
else:
wts_ho, wts_hh, wts_xh, bias_o, bias_h = pickle.load(open("hw4_weights.p", "rb"))
print predict_sequence(np.array(training_data[4343]), wts_xh, wts_hh, wts_ho,
bias_h, bias_o)
plt.plot(training_epochs, training_loss)
plt.xlabel("Training Epochs")
plt.ylabel("Training Loss")
plt.title("Training Loss vs. Number of Training Epochs")
plt.show()
# save the model hw4_weights#epochs#input_size#update_of_input_size
pickle.dump((wts_ho, wts_hh, wts_xh, bias_o, bias_h), open("hw4_weights25_10_10.p", "wb"))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment