Skip to content

Instantly share code, notes, and snippets.

View vasqu's full-sized avatar
🐢

Anton Vlasjuk vasqu

🐢
View GitHub Profile
from transformers import Ernie4_5TokenizerFast
hf_fast_tok = Ernie4_5TokenizerFast.from_pretrained("baidu/ERNIE-4.5-0.3B-Base-PT", from_slow=True)
hf_fast_tok.model_max_length = 131072
hf_fast_tok.init_kwargs.pop("auto_map", None)
hf_fast_tok.init_kwargs.pop("use_default_system_prompt", None)
hf_fast_tok.init_kwargs.pop("legacy", None)
hf_fast_tok.init_kwargs.pop("sp_model_kwargs", None)
"""Using https://github.com/vasqu/dia/tree/hf-next"""
import dac
import soundfile as sf
from datasets import Audio, load_dataset
from dia.model import Dia
# prepare dac
import dac
import torch
from datasets import Audio, load_dataset
from transformers import AutoProcessor, DacModel
model = DacModel.from_pretrained("descript/dac_44khz")
dac_model_path = dac.utils.download()
@vasqu
vasqu / fa2_compile.py
Created May 28, 2025 15:32
Fa2 with torch compile on single forward (training)
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, DataCollatorWithFlattening
model_id = "meta-llama/Llama-3.2-1B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
collator = DataCollatorWithFlattening(return_flash_attn_kwargs=True)