Last active
May 4, 2024 18:29
-
-
Save vene/21dce5dc70d46421c209baefa5246750 to your computer and use it in GitHub Desktop.
LR ADMM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" Fit logistic regression by ADMM. """ | |
# Author: Vlad Niculae <v.niculae@uva.nl> | |
# License: MIT | |
import numpy as np | |
from sklearn.datasets import load_breast_cancer | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.preprocessing import StandardScaler | |
from scipy.linalg import cho_factor, cho_solve | |
from scipy.special import expit, log_expit | |
def logloss(w, X, y_sign): | |
return -log_expit(y_sign * (X @ w)).sum() | |
def lr_admm(X, y, rho=.01, n_iter=500): | |
XtX = X.T @ X | |
C_and_lower = cho_factor(XtX) | |
n, d = X.shape | |
w = np.zeros(d) | |
s = np.zeros(n) | |
u = np.zeros(n) | |
for it in range(n_iter): | |
print("iter", it, "loss", logloss(w, X, y)) | |
yxwpu = u- y * (X @ w) | |
# update s by bisection: | |
def f(ss): | |
return -expit(-ss) + rho*(ss + yxwpu) | |
s = np.ones(n) * -1000 | |
width = 2000 | |
# assert np.all(f(s) <= 0) | |
# assert np.all(f(s+width) >= 0) | |
for _ in range(30): | |
width /= 2 | |
s[f(s+width) <= 0] += width | |
# update w | |
b = X.T @ (y * (s+u)) | |
w = cho_solve(C_and_lower, b) | |
# update u | |
u += s - y * (X @ w) | |
return w | |
def main(): | |
X, y = load_breast_cancer(return_X_y=True) | |
y_sign = 2*y-1 | |
scaler = StandardScaler() | |
n = X.shape[0] | |
X = scaler.fit_transform(X) | |
X = np.column_stack((np.ones(n), X)) | |
lr = LogisticRegression(max_iter=10000, penalty=None, fit_intercept=False).fit(X, y) | |
wtrue = lr.coef_[0] | |
print("acc", lr.score(X, y)) | |
print("loss", logloss(wtrue, X, y_sign)) | |
w = lr_admm(X, y_sign) | |
print("admm accuracy", np.mean((X @ w >= 0) == y)) | |
if __name__ == '__main__': | |
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" Fit logistic regression by ADMM. """ | |
# Author: Vlad Niculae <v.niculae@uva.nl> | |
# License: MIT | |
import numpy as np | |
from scipy.linalg import cho_factor, cho_solve | |
from scipy.special import softmax, log_softmax | |
from sklearn.datasets import load_wine | |
from sklearn.preprocessing import LabelBinarizer, StandardScaler | |
from sklearn.linear_model import LogisticRegression | |
def logloss(W, X, Y): | |
S = X @ W | |
return -np.sum(log_softmax(S, axis=-1) * Y) | |
def lr_admm(X, Y, rho=0.01, n_iter=100): | |
XtX = X.T @ X | |
C_and_lower = cho_factor(XtX) | |
n, d = X.shape | |
_, c = Y.shape | |
W = np.zeros((d, c)) | |
S = np.zeros((n, c)) | |
U = np.zeros((n, c)) | |
for it in range(n_iter): | |
print("iter", it, "loss", logloss(W, X, Y)) | |
# update S | |
S = softmax_fixed_point(rho, Y + rho * (X @ W - U), S_init=S) | |
# update W | |
W = cho_solve(C_and_lower, X.T @ (S+U)) | |
# update U | |
U += S - X @ W | |
return W | |
def softmax_fixed_point(rho, B, S_init=None, n_iter=20): | |
# find a solution of | |
# softmax(S) + rho*S = B | |
# F(S) = softmax(S) + rho*S - B | |
# F'(S) = diag(P+rho) + PP' | |
S = S_init if S_init is not None else np.zeros_like(B) | |
for _ in range(n_iter): | |
P = softmax(S, axis=-1) | |
F = P + rho*S - B | |
dot = np.sum(P * F / (P + rho), axis=-1) | |
denom = 1 + np.sum(P ** 2 / (P + rho), axis=-1) | |
coef = (dot/denom)[:, np.newaxis] | |
JinvF = (F - coef*P) / (P + rho) | |
S -= JinvF | |
return S | |
def main(): | |
X, y = load_wine(return_X_y=True) | |
scaler = StandardScaler() | |
X = scaler.fit_transform(X) | |
Y = LabelBinarizer().fit_transform(y) | |
lr = LogisticRegression(max_iter=20, | |
penalty=None, | |
fit_intercept=False, | |
verbose=False).fit(X, y) | |
print("acc", lr.score(X, y)) | |
wtrue = lr.coef_.T | |
print("loss", logloss(wtrue, X, Y)) | |
W = lr_admm(X, Y) | |
print("admm accuracy", np.mean(np.argmax(X @ W, axis=-1) == y)) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment