Skip to content

Instantly share code, notes, and snippets.

Avatar
💭
"AppxManifest.xml failed with error: The operation completed successfully."

Sasha Nik venik

💭
"AppxManifest.xml failed with error: The operation completed successfully."
View GitHub Profile
View MMDS module 5
Question 1
https://raw.githubusercontent.com/jameslafa/mining-massive-datasets/master/Week%202%20-%20Frequent%20Itemsets.ipynb
arr = [(20000, 60000000), (20000, 80000000), (100000, 40000000), (100000, 100000000)]
hash = lambda n, m: (1000000 + m*3) * 4
triangular = lambda n, m: (1000000 + (n**2) / 2.0) * 4
[triangular(v[0], v[1]) for v in arr]
[hash(v[0], v[1]) for v in arr]
View PokemonVM.kt
data class PokemonVM(
val app: Application,
val name: String,
val origin: String,
val avatar: Drawable
) {
val showDetails: ObservableBoolean = ObservableBoolean(false)
val description: ObservableField<String> = ObservableField("description placeholder")
fun onClick() {
View CommentsRecyclerViewAdapter.kt
class CommentsRecyclerViewAdapter : ListAdapter<PokemonVM, CommentsRecyclerViewAdapter.ViewHolder>(PokeDiff()) {
override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): ViewHolder {
return ViewHolder(
ListViewItemPokemonBinding.inflate(
LayoutInflater.from(parent.context), parent, false))
}
override fun onBindViewHolder(holder: ViewHolder, position: Int) {
val item = getItem(position)
holder.apply {
View list_view_item_pokemon.xml
<layout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools">
<data>
<import type="android.view.View"/>
<variable
name="viewmodel"
type="com.example.gql1.viewmodels.PokemonVM"/>
</data>
View ch9_helper.r
x = rbind(mvrnorm(50, rep(0,10), diag(10)), mvrnorm(50, rep(c(1, 0), c(5, 5)), diag(10)))
y = rep(c(0, 1), c(50, 50))
dat = data.frame(x, y=as.factor(y))
svmfit = svm(y~., data=dat)
ex1 = function (times, svmfit) {
errate = rep(0, times)
test_size = 500
for (i in 1:times) {
View ForKonstantin.py
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
corpus = []
corpus.append('I like deep learning')
corpus.append('I like NLP')
corpus.append('I enjoy flying')
word_index = {}
View ForAlex.py
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import sys
import time
from datetime import datetime
keyString = u'купить'
goodString = u'купюра'
timeThreshold = 90 # seconds timescale
View svd-img-compression.py
#!/bin/env python3
from scipy.ndimage.io import imread
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Load the picture
img = imread('./lenin.jpg', flatten=True, mode=None)
# decompose the picture matrix
View latex
S_{N} = S_{N-2} + S_{N-1}
A = \left[\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right]
A \left[\begin{array}{cc} S_{N-2} \\S_{N-1} \end{array}\right] =
\left[\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} S_{N-2} \\S_{N-1} \end{array}\right] =
\left[\begin{array}{cc} S_{N-1} \\ S_{N} \end{array}\right]
\left[\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} S_{0} \\S_{1} \end{array}\right] =
View fib.py
#!/usr/bin/env python
# Sasha Nikiforov
import numpy as np
import numpy.linalg as lg
from functools import reduce
# Not super optimal way to calculate N-th Fibonacci - taken
# from stackoverflow