Skip to content

Instantly share code, notes, and snippets.

@ventusff
Last active August 16, 2023 07:11
Show Gist options
  • Save ventusff/57f47588eaff5f8b77a382260e7da8a3 to your computer and use it in GitHub Desktop.
Save ventusff/57f47588eaff5f8b77a382260e7da8a3 to your computer and use it in GitHub Desktop.
Derivations and code tests for second-order gradients of hashgrids of tiny-cuda-nn.
import torch
import torch.nn as nn
from torch import autograd
from torch.optim import Adam
import torch.nn.functional as F
import tinycudann as tcnn
class SDF(nn.Module):
def __init__(self, hash=True, n_levels=12, log2_hashmap_size=15, base_resolution=16, smoothstep=False) -> None:
super().__init__()
self.encoder = tcnn.Encoding(3, {
"otype": "HashGrid" if hash else "DenseGrid",
"n_levels": n_levels,
"n_features_per_level": 2,
"log2_hashmap_size": log2_hashmap_size,
"base_resolution": base_resolution,
"per_level_scale": 1.5,
"interpolation": "Smoothstep" if smoothstep else "Linear"
})
self.decoder = nn.Sequential(
nn.Linear(self.encoder.n_output_dims, 64),
nn.ReLU(True),
nn.Linear(64, 1)
)
def forward(self, x):
encoded = self.encoder(x).to(dtype=torch.float)
sdf = self.decoder(encoded)
return sdf
def forward_with_nablas(self, x):
with torch.enable_grad():
x = x.requires_grad_(True)
sdf = self.forward(x)
nablas = autograd.grad(
sdf,
x,
torch.ones_like(sdf, device=x.device),
create_graph=True,
retain_graph=True,
only_inputs=True)[0]
return sdf, nablas
if __name__ == '__main__':
"""
NOTE: Jianfei: I provide three testing tools for backward_backward functionality.
Play around as you want :)
1. test_train(): train a toy SDF model with eikonal term.
2. grad_check(): check backward_backward numerical correctness via torch.autograd.gradcheck.
3. vis_graph(): visualize torch compute graph
"""
def test_():
device = torch.device("cuda")
model = SDF(True, n_levels=1, log2_hashmap_size=15, base_resolution=4, smoothstep=False).to(device)
x = (torch.tensor([[0.3, 0.4, 0.5]], dtype=torch.float, device=device)).requires_grad_(True)
sdf, nablas = model.forward_with_nablas(x)
autograd.grad(
nablas,
x,
torch.ones_like(nablas, device=x.device),
create_graph=False,
retain_graph=False,
only_inputs=True)[0]
def test_train():
"""
train a toy SDF model with eikonal term.
"""
from tqdm import tqdm
device = torch.device("cuda")
model = SDF(True, 4, base_resolution=12).to(device)
# model = SDF(False, 4, base_resolution=12).to(device)
optimizer = Adam(model.parameters(), 2.0e-3)
with tqdm(range(10000)) as pbar:
for _ in pbar:
x = torch.rand([51200,3], dtype=torch.float, device=device)
sdf, nablas = model.forward_with_nablas(x)
nablas_norm: torch.Tensor = nablas.norm(dim=-1)
# eikonal term
loss = F.mse_loss(nablas_norm, nablas_norm.new_ones(nablas_norm.shape), reduction='mean')
optimizer.zero_grad()
loss.backward()
optimizer.step()
pbar.set_postfix(loss=loss.item())
def grad_check():
"""
check backward_backward numerical correctness via torch.autograd.gradcheck
"""
import numpy as np
from types import SimpleNamespace
from tinycudann.modules import _module_function_backward, _module_function, _torch_precision, _C
dtype = _torch_precision(_C.preferred_precision())
device = torch.device("cuda")
# NOTE: need a smaller net when gradcheck, otherwise will OOM
model = SDF(True, n_levels=4, log2_hashmap_size=19, base_resolution=4, smoothstep=True).to(device)
# model = SDF(True, n_levels=1, log2_hashmap_size=15, base_resolution=8, smoothstep=False).to(device)
def apply_on_x(x):
params = model.encoder.params.to(_torch_precision(model.encoder.native_tcnn_module.param_precision())).contiguous()
return _module_function.apply(
model.encoder.native_tcnn_module, x, params, 128.0
)
# ✓ y w.r.t. x i.e. dy_dx (passed)
autograd.gradcheck(
apply_on_x,
# (torch.rand([1,3], dtype=torch.float, device=device)).requires_grad_(True),
(torch.tensor([[0.17, 0.55, 0.79]], dtype=torch.float, device=device)).requires_grad_(True),
eps=1.0e-3)
# ✓ dL_dx w.r.t. x i.e. ddLdx_dx (passed)
# ✓ dL_dx w.r.t. dL_dy i.e. ddLdx_ddLdy (passed)
autograd.gradgradcheck(
apply_on_x,
# (torch.rand([1,3], dtype=torch.float, device=device)).requires_grad_(True),
(torch.tensor([[0.17, 0.55, 0.79]], dtype=torch.float, device=device)).requires_grad_(True),
eps=1.0e-3,
nondet_tol=0.001 # due to non-determinism of atomicAdd
)
def backward_apply_on_x(x):
dL_dy = torch.ones([*x.shape[:-1], model.encoder.n_output_dims], dtype=dtype, device=device)
params = model.encoder.params.to(_torch_precision(model.encoder.native_tcnn_module.param_precision())).contiguous()
native_ctx, y = model.encoder.native_tcnn_module.fwd(x, params)
dummy_ctx_fwd = SimpleNamespace(
native_tcnn_module=model.encoder.native_tcnn_module,
loss_scale=model.encoder.loss_scale,
native_ctx=native_ctx)
return _module_function_backward.apply(dummy_ctx_fwd, dL_dy, x, params, y)
def backward_apply_on_params(params):
x = (torch.tensor([[0.17, 0.55, 0.79]], dtype=torch.float, device=device)).requires_grad_(True)
dL_dy = torch.ones([*x.shape[:-1], model.encoder.n_output_dims], dtype=dtype, device=device)
params = params.to(_torch_precision(model.encoder.native_tcnn_module.param_precision())).contiguous()
native_ctx, y = model.encoder.native_tcnn_module.fwd(x, params)
dummy_ctx_fwd = SimpleNamespace(
native_tcnn_module=model.encoder.native_tcnn_module,
loss_scale=model.encoder.loss_scale,
native_ctx=native_ctx)
return _module_function_backward.apply(dummy_ctx_fwd, dL_dy, x, params, y)
def backward_apply_on_dLdy(dL_dy):
x = (torch.tensor([[0.17, 0.55, 0.79]], dtype=torch.float, device=device)).requires_grad_(True)
# params = model.encoder.params.data.to(_torch_precision(model.encoder.native_tcnn_module.param_precision())).contiguous()
params = model.encoder.params.to(_torch_precision(model.encoder.native_tcnn_module.param_precision())).contiguous()
native_ctx, y = model.encoder.native_tcnn_module.fwd(x, params)
dummy_ctx_fwd = SimpleNamespace(
native_tcnn_module=model.encoder.native_tcnn_module,
loss_scale=model.encoder.loss_scale,
native_ctx=native_ctx)
return _module_function_backward.apply(dummy_ctx_fwd, dL_dy, x, params, y)
# NOTE: partial passed (Jacobian mismatch for output 1 with respect to input 0, which is ddLdgrid_dx)
# ✓ dL_dx w.r.t. x i.e. ddLdx_dx (passed)
# ✓ dL_dgrid w.r.t. x i.e. ddLdgrid_dx (currently do not support second order gradients from grid's gradient.)
# autograd.gradcheck(
# backward_apply_on_x,
# # (torch.rand([1,3], dtype=torch.float, device=device)).requires_grad_(True),
# (torch.tensor([[0.17, 0.55, 0.79]], dtype=torch.float, device=device)).requires_grad_(True),
# eps=1.0e-4
# )
# NOTE: passed
# ✓ dL_dx w.r.t. grid i.e. ddLdx_dgrid (passed)
# ✓ dL_dgrid w.r.t. grid i.e. ddLdgrid_dgrid (all zero)
autograd.gradcheck(
backward_apply_on_params,
model.encoder.params,
eps=1.0e-3
)
# NOTE: partial passed (Jacobian mismatch for output 1 with respect to input 0, which is ddLdgrid_ddLdy)
# ✓ dL_dx w.r.t. dL_dy i.e. ddLdx_ddLdy (passed)
# x dL_dgrid w.r.t. dL_dy i.e. ddLdgrid_ddLdy (currently do not support second order gradients from grid's gradient.)
autograd.gradcheck(
backward_apply_on_dLdy,
torch.randn([1,model.encoder.n_output_dims], dtype=dtype, device=device).requires_grad_(True),
eps=1.0e-3, atol=0.01, rtol=0.001
)
def vis_graph():
"""
visualize torch compute graphs
"""
import torchviz
device = torch.device("cuda")
# NOTE: need a smaller net when gradcheck, otherwise will OOM
model = SDF(True, n_levels=4, log2_hashmap_size=15, base_resolution=4).to(device)
x = torch.tensor([[0.17, 0.55, 0.79]], dtype=torch.float, device=device)
sdf, nablas = model.forward_with_nablas(x)
torchviz.make_dot(
(nablas, sdf, x, model.encoder.params, *list(model.decoder.parameters())),
{'nablas': nablas, 'sdf': sdf, 'x': x, 'grid_param': model.encoder.params,
**{n:p for n, p in model.decoder.named_parameters(prefix='decoder')}
}).render("attached", format="png")
def check_throw():
network = tcnn.Network(3, 1, network_config={
"otype": "FullyFusedMLP", # Component type.
"activation": 'ReLU', # Activation of hidden layers.
"output_activation": 'None', # Activation of the output layer.
"n_neurons": 64, # Neurons in each hidden layer. # May only be 16, 32, 64, or 128.
"n_hidden_layers": 5, # Number of hidden layers.
"feedback_alignment": False # Use feedback alignment # [Lillicrap et al. 2016].
}, seed=42)
# test_()
test_train()
# grad_check()
# vis_graph()
# check_throw()
@ventusff
Copy link
Author

ventusff commented May 8, 2022

Yes, only compilation with float32 precision can pass gradcheck() tests

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment