Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import pandas as pd | |
# Como viene una columna de vecha y 4 de hora, hay que parsearlas convinadas | |
rdf = pd.read_excel('data.xlsx', header = None, parse_dates = [[0,1], [0,3], [0,5], [0,7]]) | |
# Renombramos las columnas y concatenamos en una sola tabla de timestamp y altura | |
col_map = { | |
'0_1': 'datetime', | |
'0_3': 'datetime', | |
'0_5': 'datetime', | |
'0_7': 'datetime', | |
2: 'rheight', | |
4: 'rheight', | |
6: 'rheight', | |
8: 'rheight', | |
} | |
frames = [rdf[['0_1', 2]].rename(columns=col_map), | |
rdf[['0_3', 4]].rename(columns=col_map), | |
rdf[['0_5', 6]].rename(columns=col_map), | |
rdf[['0_7', 8]].rename(columns=col_map)] | |
edf = pd.concat(frames).dropna() | |
# Eliminamos los 2 ultimos caracteres del valor de altura y lo convertimos de str a float | |
edf['height'] = edf.rheight.str[:-2].apply(float) | |
# ordenamos y eliminamos la altura cruda (string) | |
df = edf.drop(columns=['rheight']).sort_values(by='datetime').set_index('datetime') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment