Created
March 13, 2017 18:55
-
-
Save victor-shepardson/420658145bec4fdeb1073cbfa80fe579 to your computer and use it in GitHub Desktop.
estimate a univariate Gaussian with Gibbs sampling
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.stats import norm, invgamma | |
# estimate a univariate gaussian by Gibbs sampling | |
true_mu = 10 | |
true_sigma = 2 | |
true_v = true_sigma**0.5 | |
N = 50 | |
R = 5000 | |
D = norm.rvs(true_mu, true_sigma, size=N) | |
# D = np.concatenate((norm.rvs(true_mu, true_sigma, size=N*9//10), norm.rvs(0, 1, size=N//10))) | |
Dbar = D.mean() | |
# priors | |
mu_0 = 0 | |
v_mu = 1000 | |
alpha = 1 | |
beta = 1 | |
# init state | |
mu_state = 0 | |
v_state = 1 | |
mus = [mu_state] | |
vs = [v_state] | |
xs = np.linspace(-5, 20, 1000) | |
p_x = 0 | |
for _ in range(R): | |
# update mu | |
posterior_mu = (v_mu*Dbar+v_state/N*mu_0)/(v_mu+v_state/N) | |
posterior_sigma = np.sqrt((v_mu*v_state/N)/(v_mu+v_state/N)) | |
mu_state = norm.rvs(posterior_mu, posterior_sigma) | |
# update v | |
posterior_alpha = N/2 + alpha | |
posterior_beta = ((D - mu_state)**2).sum()/2 + beta | |
v_state = invgamma.rvs(posterior_alpha)*posterior_beta | |
mus.append(mu_state) | |
vs.append(v_state) | |
p_x += norm.pdf(xs, mu_state, v_state**0.5) | |
p_x/=R | |
true_p_x = norm.pdf(xs, true_mu, true_sigma) | |
# true_p_x = norm.pdf(xs, true_mu, true_sigma)*0.9 + norm.pdf(xs, 0, 1)*0.1 | |
ml_p_x = norm.pdf(xs, D.mean(), D.std()) | |
plt.plot(xs, true_p_x) | |
plt.plot(xs, p_x) | |
plt.plot(xs, ml_p_x) | |
plt.bar(D, np.ones_like(D)/D.shape, width=0.005) | |
print(xs[np.argmax(p_x)]) | |
print(D.mean()) | |
# black: data | |
# blue: ground truth | |
# green: gibbs | |
# red: maximum likelihood (sample mean & variance) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment