Skip to content

Instantly share code, notes, and snippets.

@victornpb
Created November 4, 2015 23:36
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 1 You must be signed in to fork a gist
  • Save victornpb/f639f37373be0f6e82e1 to your computer and use it in GitHub Desktop.
Save victornpb/f639f37373be0f6e82e1 to your computer and use it in GitHub Desktop.
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* AES implementation in JavaScript (c) Chris Veness 2005-2014 / MIT Licence */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* jshint node:true *//* global define */
'use strict';
/**
* AES (Rijndael cipher) encryption routines,
*
* Reference implementation of FIPS-197 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
*
* @namespace
*/
var Aes = {};
/**
* AES Cipher function: encrypt 'input' state with Rijndael algorithm [§5.1];
* applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage.
*
* @param {number[]} input - 16-byte (128-bit) input state array.
* @param {number[][]} w - Key schedule as 2D byte-array (Nr+1 x Nb bytes).
* @returns {number[]} Encrypted output state array.
*/
Aes.cipher = function(input, w) {
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys
var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4]
for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i];
state = Aes.addRoundKey(state, w, 0, Nb);
for (var round=1; round<Nr; round++) {
state = Aes.subBytes(state, Nb);
state = Aes.shiftRows(state, Nb);
state = Aes.mixColumns(state, Nb);
state = Aes.addRoundKey(state, w, round, Nb);
}
state = Aes.subBytes(state, Nb);
state = Aes.shiftRows(state, Nb);
state = Aes.addRoundKey(state, w, Nr, Nb);
var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4]
for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)];
return output;
};
/**
* Perform key expansion to generate a key schedule from a cipher key [§5.2].
*
* @param {number[]} key - Cipher key as 16/24/32-byte array.
* @returns {number[][]} Expanded key schedule as 2D byte-array (Nr+1 x Nb bytes).
*/
Aes.keyExpansion = function(key) {
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
var Nk = key.length/4; // key length (in words): 4/6/8 for 128/192/256-bit keys
var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys
var w = new Array(Nb*(Nr+1));
var temp = new Array(4);
// initialise first Nk words of expanded key with cipher key
for (var i=0; i<Nk; i++) {
var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]];
w[i] = r;
}
// expand the key into the remainder of the schedule
for (var i=Nk; i<(Nb*(Nr+1)); i++) {
w[i] = new Array(4);
for (var t=0; t<4; t++) temp[t] = w[i-1][t];
// each Nk'th word has extra transformation
if (i % Nk == 0) {
temp = Aes.subWord(Aes.rotWord(temp));
for (var t=0; t<4; t++) temp[t] ^= Aes.rCon[i/Nk][t];
}
// 256-bit key has subWord applied every 4th word
else if (Nk > 6 && i%Nk == 4) {
temp = Aes.subWord(temp);
}
// xor w[i] with w[i-1] and w[i-Nk]
for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t];
}
return w;
};
/**
* Apply SBox to state S [§5.1.1]
* @private
*/
Aes.subBytes = function(s, Nb) {
for (var r=0; r<4; r++) {
for (var c=0; c<Nb; c++) s[r][c] = Aes.sBox[s[r][c]];
}
return s;
};
/**
* Shift row r of state S left by r bytes [§5.1.2]
* @private
*/
Aes.shiftRows = function(s, Nb) {
var t = new Array(4);
for (var r=1; r<4; r++) {
for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy
for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back
} // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
return s; // see asmaes.sourceforge.net/rijndael/rijndaelImplementation.pdf
};
/**
* Combine bytes of each col of state S [§5.1.3]
* @private
*/
Aes.mixColumns = function(s, Nb) {
for (var c=0; c<4; c++) {
var a = new Array(4); // 'a' is a copy of the current column from 's'
var b = new Array(4); // 'b' is a•{02} in GF(2^8)
for (var i=0; i<4; i++) {
a[i] = s[i][c];
b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1;
}
// a[n] ^ b[n] is a•{03} in GF(2^8)
s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // {02}•a0 + {03}•a1 + a2 + a3
s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 • {02}•a1 + {03}•a2 + a3
s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + {02}•a2 + {03}•a3
s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // {03}•a0 + a1 + a2 + {02}•a3
}
return s;
};
/**
* Xor Round Key into state S [§5.1.4]
* @private
*/
Aes.addRoundKey = function(state, w, rnd, Nb) {
for (var r=0; r<4; r++) {
for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r];
}
return state;
};
/**
* Apply SBox to 4-byte word w
* @private
*/
Aes.subWord = function(w) {
for (var i=0; i<4; i++) w[i] = Aes.sBox[w[i]];
return w;
};
/**
* Rotate 4-byte word w left by one byte
* @private
*/
Aes.rotWord = function(w) {
var tmp = w[0];
for (var i=0; i<3; i++) w[i] = w[i+1];
w[3] = tmp;
return w;
};
// sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1]
Aes.sBox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16];
// rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2]
Aes.rCon = [ [0x00, 0x00, 0x00, 0x00],
[0x01, 0x00, 0x00, 0x00],
[0x02, 0x00, 0x00, 0x00],
[0x04, 0x00, 0x00, 0x00],
[0x08, 0x00, 0x00, 0x00],
[0x10, 0x00, 0x00, 0x00],
[0x20, 0x00, 0x00, 0x00],
[0x40, 0x00, 0x00, 0x00],
[0x80, 0x00, 0x00, 0x00],
[0x1b, 0x00, 0x00, 0x00],
[0x36, 0x00, 0x00, 0x00] ];
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (typeof module != 'undefined' && module.exports) module.exports = Aes; // CommonJs export
if (typeof define == 'function' && define.amd) define([], function() { return Aes; }); // AMD
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* AES Counter-mode implementation in JavaScript (c) Chris Veness 2005-2014 / MIT Licence */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* jshint node:true *//* global define, escape, unescape, btoa, atob */
'use strict';
if (typeof module!='undefined' && module.exports) var Aes = require('./aes'); // CommonJS (Node.js)
/**
* Aes.Ctr: Counter-mode (CTR) wrapper for AES.
*
* This encrypts a Unicode string to produces a base64 ciphertext using 128/192/256-bit AES,
* and the converse to decrypt an encrypted ciphertext.
*
* See http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
*
* @augments Aes
*/
Aes.Ctr = {};
/**
* Encrypt a text using AES encryption in Counter mode of operation.
*
* Unicode multi-byte character safe
*
* @param {string} plaintext - Source text to be encrypted.
* @param {string} password - The password to use to generate a key.
* @param {number} nBits - Number of bits to be used in the key; 128 / 192 / 256.
* @returns {string} Encrypted text.
*
* @example
* var encr = Aes.Ctr.encrypt('big secret', 'pāşšŵōřđ', 256); // encr: 'lwGl66VVwVObKIr6of8HVqJr'
*/
Aes.Ctr.encrypt = function(plaintext, password, nBits) {
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys
plaintext = String(plaintext).utf8Encode();
password = String(password).utf8Encode();
// use AES itself to encrypt password to get cipher key (using plain password as source for key
// expansion) - gives us well encrypted key (though hashed key might be preferred for prod'n use)
var nBytes = nBits/8; // no bytes in key (16/24/32)
var pwBytes = new Array(nBytes);
for (var i=0; i<nBytes; i++) { // use 1st 16/24/32 chars of password for key
pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i);
}
var key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes)); // gives us 16-byte key
key = key.concat(key.slice(0, nBytes-16)); // expand key to 16/24/32 bytes long
// initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec,
// [2-3] = random, [4-7] = seconds, together giving full sub-millisec uniqueness up to Feb 2106
var counterBlock = new Array(blockSize);
var nonce = (new Date()).getTime(); // timestamp: milliseconds since 1-Jan-1970
var nonceMs = nonce%1000;
var nonceSec = Math.floor(nonce/1000);
var nonceRnd = Math.floor(Math.random()*0xffff);
// for debugging: nonce = nonceMs = nonceSec = nonceRnd = 0;
for (var i=0; i<2; i++) counterBlock[i] = (nonceMs >>> i*8) & 0xff;
for (var i=0; i<2; i++) counterBlock[i+2] = (nonceRnd >>> i*8) & 0xff;
for (var i=0; i<4; i++) counterBlock[i+4] = (nonceSec >>> i*8) & 0xff;
// and convert it to a string to go on the front of the ciphertext
var ctrTxt = '';
for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]);
// generate key schedule - an expansion of the key into distinct Key Rounds for each round
var keySchedule = Aes.keyExpansion(key);
var blockCount = Math.ceil(plaintext.length/blockSize);
var ciphertxt = new Array(blockCount); // ciphertext as array of strings
for (var b=0; b<blockCount; b++) {
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
// done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB)
for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff;
for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8);
var cipherCntr = Aes.cipher(counterBlock, keySchedule); // -- encrypt counter block --
// block size is reduced on final block
var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1;
var cipherChar = new Array(blockLength);
for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter char-by-char --
cipherChar[i] = cipherCntr[i] ^ plaintext.charCodeAt(b*blockSize+i);
cipherChar[i] = String.fromCharCode(cipherChar[i]);
}
ciphertxt[b] = cipherChar.join('');
}
// use Array.join() for better performance than repeated string appends
var ciphertext = ctrTxt + ciphertxt.join('');
ciphertext = ciphertext.base64Encode();
return ciphertext;
};
/**
* Decrypt a text encrypted by AES in counter mode of operation
*
* @param {string} ciphertext - Source text to be encrypted.
* @param {string} password - Password to use to generate a key.
* @param {number} nBits - Number of bits to be used in the key; 128 / 192 / 256.
* @returns {string} Decrypted text
*
* @example
* var decr = Aes.Ctr.encrypt('lwGl66VVwVObKIr6of8HVqJr', 'pāşšŵōřđ', 256); // decr: 'big secret'
*/
Aes.Ctr.decrypt = function(ciphertext, password, nBits) {
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys
ciphertext = String(ciphertext).base64Decode();
password = String(password).utf8Encode();
// use AES to encrypt password (mirroring encrypt routine)
var nBytes = nBits/8; // no bytes in key
var pwBytes = new Array(nBytes);
for (var i=0; i<nBytes; i++) {
pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i);
}
var key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes));
key = key.concat(key.slice(0, nBytes-16)); // expand key to 16/24/32 bytes long
// recover nonce from 1st 8 bytes of ciphertext
var counterBlock = new Array(8);
var ctrTxt = ciphertext.slice(0, 8);
for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i);
// generate key schedule
var keySchedule = Aes.keyExpansion(key);
// separate ciphertext into blocks (skipping past initial 8 bytes)
var nBlocks = Math.ceil((ciphertext.length-8) / blockSize);
var ct = new Array(nBlocks);
for (var b=0; b<nBlocks; b++) ct[b] = ciphertext.slice(8+b*blockSize, 8+b*blockSize+blockSize);
ciphertext = ct; // ciphertext is now array of block-length strings
// plaintext will get generated block-by-block into array of block-length strings
var plaintxt = new Array(ciphertext.length);
for (var b=0; b<nBlocks; b++) {
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
for (var c=0; c<4; c++) counterBlock[15-c] = ((b) >>> c*8) & 0xff;
for (var c=0; c<4; c++) counterBlock[15-c-4] = (((b+1)/0x100000000-1) >>> c*8) & 0xff;
var cipherCntr = Aes.cipher(counterBlock, keySchedule); // encrypt counter block
var plaintxtByte = new Array(ciphertext[b].length);
for (var i=0; i<ciphertext[b].length; i++) {
// -- xor plaintxt with ciphered counter byte-by-byte --
plaintxtByte[i] = cipherCntr[i] ^ ciphertext[b].charCodeAt(i);
plaintxtByte[i] = String.fromCharCode(plaintxtByte[i]);
}
plaintxt[b] = plaintxtByte.join('');
}
// join array of blocks into single plaintext string
var plaintext = plaintxt.join('');
plaintext = plaintext.utf8Decode(); // decode from UTF8 back to Unicode multi-byte chars
return plaintext;
};
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/** Extend String object with method to encode multi-byte string to utf8
* - monsur.hossa.in/2012/07/20/utf-8-in-javascript.html */
if (typeof String.prototype.utf8Encode == 'undefined') {
String.prototype.utf8Encode = function() {
return unescape( encodeURIComponent( this ) );
};
}
/** Extend String object with method to decode utf8 string to multi-byte */
if (typeof String.prototype.utf8Decode == 'undefined') {
String.prototype.utf8Decode = function() {
try {
return decodeURIComponent( escape( this ) );
} catch (e) {
return this; // invalid UTF-8? return as-is
}
};
}
/** Extend String object with method to encode base64
* - developer.mozilla.org/en-US/docs/Web/API/window.btoa, nodejs.org/api/buffer.html
* note: if btoa()/atob() are not available (eg IE9-), try github.com/davidchambers/Base64.js */
if (typeof String.prototype.base64Encode == 'undefined') {
String.prototype.base64Encode = function() {
if (typeof btoa != 'undefined') return btoa(this); // browser
if (typeof Buffer != 'undefined') return new Buffer(this, 'utf8').toString('base64'); // Node.js
throw new Error('No Base64 Encode');
};
}
/** Extend String object with method to decode base64 */
if (typeof String.prototype.base64Decode == 'undefined') {
String.prototype.base64Decode = function() {
if (typeof atob != 'undefined') return atob(this); // browser
if (typeof Buffer != 'undefined') return new Buffer(this, 'base64').toString('utf8'); // Node.js
throw new Error('No Base64 Decode');
};
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (typeof module != 'undefined' && module.exports) module.exports = Aes.Ctr; // CommonJs export
if (typeof define == 'function' && define.amd) define(['Aes'], function() { return Aes.Ctr; }); // AMD
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Encrypt/decrypt files */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
function encryptFile(file) {
// use FileReader.readAsArrayBuffer to handle binary files
var reader = new FileReader();
reader.readAsArrayBuffer(file);
reader.onload = function(evt) {
$('body').css({'cursor':'wait'});
// Aes.Ctr.encrypt expects a string, but converting binary file directly to string could
// give invalid Unicode sequences, so convert bytestream ArrayBuffer to single-byte chars
var contentBytes = new Uint8Array(reader.result); // ≡ evt.target.result
var contentStr = '';
for (var i=0; i<contentBytes.length; i++) {
contentStr += String.fromCharCode(contentBytes[i]);
}
var password = $('#password-file').val();
var t1 = new Date();
var ciphertext = Aes.Ctr.encrypt(contentStr, password, 256);
var t2 = new Date();
// use Blob to save encrypted file
var blob = new Blob([ciphertext], { type: 'text/plain' });
var filename = file.name+'.encrypted';
saveAs(blob, filename);
$('#encrypt-file-time').html(((t2 - t1)/1000)+'s'); // display time taken
$('body').css({'cursor':'default'});
}
}
function decryptFile(file) {
// use FileReader.ReadAsText to read (base64-encoded) ciphertext file
var reader = new FileReader();
reader.readAsText(file);
reader.onload = function(evt) {
$('body').css({'cursor':'wait'});
var content = reader.result; // ≡ evt.target.result
var password = $('#password-file').val();
var t1 = new Date();
var plaintext = Aes.Ctr.decrypt(content, password, 256);
var t2 = new Date();
// convert single-byte character stream to ArrayBuffer bytestream
var contentBytes = new Uint8Array(plaintext.length);
for (var i=0; i<plaintext.length; i++) {
contentBytes[i] = plaintext.charCodeAt(i);
}
// use Blob to save decrypted file
var blob = new Blob([contentBytes], { type: 'application/octet-stream' });
var filename = file.name.replace(/\.encrypted$/,'')+'.decrypted';
saveAs(blob, filename);
$('#decrypt-file-time').html(((t2 - t1)/1000)+'s'); // display time taken
$('body').css({'cursor':'default'});
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Encrypt/decrypt files */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
function encryptFile(file) {
// use FileReader.readAsArrayBuffer to handle binary files
var reader = new FileReader();
reader.readAsArrayBuffer(file);
reader.onload = function(evt) {
$('body').css({'cursor':'wait'});
// Aes.Ctr.encrypt expects a string, but converting binary file directly to string could
// give invalid Unicode sequences, so convert bytestream ArrayBuffer to single-byte chars
var contentBytes = new Uint8Array(reader.result); // ≡ evt.target.result
var contentStr = '';
for (var i=0; i<contentBytes.length; i++) {
contentStr += String.fromCharCode(contentBytes[i]);
}
var password = $('#password-file').val();
var t1 = new Date();
var ciphertext = Aes.Ctr.encrypt(contentStr, password, 256);
var t2 = new Date();
// use Blob to save encrypted file
var blob = new Blob([ciphertext], { type: 'text/plain' });
var filename = file.name+'.encrypted';
saveAs(blob, filename);
$('#encrypt-file-time').html(((t2 - t1)/1000)+'s'); // display time taken
$('body').css({'cursor':'default'});
}
}
function decryptFile(file) {
// use FileReader.ReadAsText to read (base64-encoded) ciphertext file
var reader = new FileReader();
reader.readAsText(file);
reader.onload = function(evt) {
$('body').css({'cursor':'wait'});
var content = reader.result; // ≡ evt.target.result
var password = $('#password-file').val();
var t1 = new Date();
var plaintext = Aes.Ctr.decrypt(content, password, 256);
var t2 = new Date();
// convert single-byte character stream to ArrayBuffer bytestream
var contentBytes = new Uint8Array(plaintext.length);
for (var i=0; i<plaintext.length; i++) {
contentBytes[i] = plaintext.charCodeAt(i);
}
// use Blob to save decrypted file
var blob = new Blob([contentBytes], { type: 'application/octet-stream' });
var filename = file.name.replace(/\.encrypted$/,'')+'.decrypted';
saveAs(blob, filename);
$('#decrypt-file-time').html(((t2 - t1)/1000)+'s'); // display time taken
$('body').css({'cursor':'default'});
}
}
@AkshayJainG
Copy link

Anything about how to go on about decrypting it?

@SipSup3314
Copy link

RTFM

Anything about how to go on about decrypting it?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment