Created
February 10, 2018 13:00
-
-
Save vihar/62a3c5f21b275c3a69aba35cf547628c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
print("Enter the two values for input layers") | |
print('a = ') | |
a = int(input()) | |
# 2 | |
print('b = ') | |
b = int(input()) | |
weights = { | |
'node_0': np.array([2, 4]), | |
'node_1': np.array([[4, -5]]), | |
'output_node': np.array([2, 7]) | |
} | |
input_data = np.array([a, b]) | |
def relu(input): | |
# Rectified Linear Activation | |
output = max(input, 0) | |
return(output) | |
node_0_input = (input_data * weights['node_0']).sum() | |
node_0_output = relu(node_0_input) | |
node_1_input = (input_data * weights['node_1']).sum() | |
node_1_output = relu(node_1_input) | |
hidden_layer_outputs = np.array([node_0_output, node_1_output]) | |
model_output = (hidden_layer_outputs * weights['output_node']).sum() | |
print(model_output) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment