Last active
April 22, 2020 14:58
-
-
Save viniciusmss/39b0cd413b1c9c509984fc0ec5503c23 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@variational_estimator | |
class BNN(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# convolutional layer (sees 32x32x3 image tensor) | |
self.conv1 = BayesianConv2d(3, 8, (3,3), padding=1) | |
# convolutional layer (sees 16x16x8 tensor) | |
self.conv2 = BayesianConv2d(8, 16, (3,3), padding=1) | |
# convolutional layer (sees 8x8x16 tensor) | |
self.conv3 = BayesianConv2d(16, 16, (3,3), padding=1) | |
# max pooling layer | |
self.pool = nn.MaxPool2d(2, 2) | |
# linear layer (16 * 4 * 4 -> 100) | |
self.fc1 = BayesianLinear(16 * 4 * 4, 100) | |
# linear layer (100 -> 10) | |
self.fc2 = BayesianLinear(100, 10) | |
def forward(self, x): | |
# add sequence of convolutional and max pooling layers | |
x = self.pool(F.relu(self.conv1(x))) | |
x = self.pool(F.relu(self.conv2(x))) | |
x = self.pool(F.relu(self.conv3(x))) | |
# flatten image input | |
x = x.view(-1, 16 * 4 * 4) | |
# add 1st hidden layer, with relu activation function | |
x = F.relu(self.fc1(x)) | |
return self.fc2(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment