| ######cuML###### | ######Sklearn###### |
| | |
| from cuml import | from sklearn.ensemble import |
| RandomForestClassifier as cuRF | RandomForestClassifier as sklRF |
| | import multiprocessing as mp |
| | |
| # cuml Random Forest params | #sklearn Random Forest params |
| cu_rf_params = { | skl_rf_params = { |
| ‘n_estimators’: 25, | ‘n_estimators’: 25, |
| ‘max_depth’: 13, | ‘max_depth’: 13, |
| ‘n_bins’: 15, | |
| ‘n_streams’: 8 } | ‘n_jobs’: mp.cpu_count() } |
| | |
| cu_rf = cuRF(**cu_rf_params) | skl_rf = sklRF(**skl_rf_params) |
| cu_rf.fit(X_train, y_train) | skl_rf.fit(X_train, y_train) |
| | |
| print("cuml RF Accuracy Score: " | print("sklearn RF Accuracy Score: " |
| accuracy_score( | accuracy_score( |
| cu_rf.predict(X_test), y_test)) | skl_rf.predict(X_test), y_test)) |
Last active
October 31, 2019 09:26
-
-
Save vishalmehta1991/b9ffe8899724ece18a62c6c045273963 to your computer and use it in GitHub Desktop.
Side by side cuML vs Sklearn
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment