-
-
Save viveksck/a0abb5616113a72ca4a2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
(C) Mathieu Blondel - 2010 | |
License: BSD 3 clause | |
Implementation of the collapsed Gibbs sampler for | |
Latent Dirichlet Allocation, as described in | |
Finding scientifc topics (Griffiths and Steyvers) | |
""" | |
import numpy as np | |
import scipy as sp | |
from scipy.special import gammaln | |
def sample_index(p): | |
""" | |
Sample from the Multinomial distribution and return the sample index. | |
""" | |
return np.random.multinomial(1,p).argmax() | |
def word_indices(vec): | |
""" | |
Turn a document vector of size vocab_size to a sequence | |
of word indices. The word indices are between 0 and | |
vocab_size-1. The sequence length is equal to the document length. | |
""" | |
for idx in vec.nonzero()[0]: | |
for i in xrange(int(vec[idx])): | |
yield idx | |
def log_multi_beta(alpha, K=None): | |
""" | |
Logarithm of the multinomial beta function. | |
""" | |
if K is None: | |
# alpha is assumed to be a vector | |
return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha)) | |
else: | |
# alpha is assumed to be a scalar | |
return K * gammaln(alpha) - gammaln(K*alpha) | |
class LdaSampler(object): | |
def __init__(self, n_topics, alpha=0.1, beta=0.1): | |
""" | |
n_topics: desired number of topics | |
alpha: a scalar (FIXME: accept vector of size n_topics) | |
beta: a scalar (FIME: accept vector of size vocab_size) | |
""" | |
self.n_topics = n_topics | |
self.alpha = alpha | |
self.beta = beta | |
def _initialize(self, matrix): | |
n_docs, vocab_size = matrix.shape | |
# number of times document m and topic z co-occur | |
self.nmz = np.zeros((n_docs, self.n_topics)) | |
# number of times topic z and word w co-occur | |
self.nzw = np.zeros((self.n_topics, vocab_size)) | |
self.nm = np.zeros(n_docs) | |
self.nz = np.zeros(self.n_topics) | |
self.topics = {} | |
for m in xrange(n_docs): | |
# i is a number between 0 and doc_length-1 | |
# w is a number between 0 and vocab_size-1 | |
for i, w in enumerate(word_indices(matrix[m, :])): | |
# choose an arbitrary topic as first topic for word i | |
z = np.random.randint(self.n_topics) | |
self.nmz[m,z] += 1 | |
self.nm[m] += 1 | |
self.nzw[z,w] += 1 | |
self.nz[z] += 1 | |
self.topics[(m,i)] = z | |
def _conditional_distribution(self, m, w): | |
""" | |
Conditional distribution (vector of size n_topics). | |
""" | |
vocab_size = self.nzw.shape[1] | |
left = (self.nzw[:,w] + self.beta) / \ | |
(self.nz + self.beta * vocab_size) | |
right = (self.nmz[m,:] + self.alpha) / \ | |
(self.nm[m] + self.alpha * self.n_topics) | |
p_z = left * right | |
# normalize to obtain probabilities | |
p_z /= np.sum(p_z) | |
return p_z | |
def loglikelihood(self): | |
""" | |
Compute the likelihood that the model generated the data. | |
""" | |
vocab_size = self.nzw.shape[1] | |
n_docs = self.nmz.shape[0] | |
lik = 0 | |
for z in xrange(self.n_topics): | |
lik += log_multi_beta(self.nzw[z,:]+self.beta) | |
lik -= log_multi_beta(self.beta, vocab_size) | |
for m in xrange(n_docs): | |
lik += log_multi_beta(self.nmz[m,:]+self.alpha) | |
lik -= log_multi_beta(self.alpha, self.n_topics) | |
return lik | |
def phi(self): | |
""" | |
Compute phi = p(w|z). | |
""" | |
V = self.nzw.shape[1] | |
num = self.nzw + self.beta | |
num /= np.sum(num, axis=1)[:, np.newaxis] | |
return num | |
def run(self, matrix, maxiter=30): | |
""" | |
Run the Gibbs sampler. | |
""" | |
n_docs, vocab_size = matrix.shape | |
self._initialize(matrix) | |
for it in xrange(maxiter): | |
for m in xrange(n_docs): | |
for i, w in enumerate(word_indices(matrix[m, :])): | |
z = self.topics[(m,i)] | |
self.nmz[m,z] -= 1 | |
self.nm[m] -= 1 | |
self.nzw[z,w] -= 1 | |
self.nz[z] -= 1 | |
p_z = self._conditional_distribution(m, w) | |
z = sample_index(p_z) | |
self.nmz[m,z] += 1 | |
self.nm[m] += 1 | |
self.nzw[z,w] += 1 | |
self.nz[z] += 1 | |
self.topics[(m,i)] = z | |
# FIXME: burn-in and lag! | |
yield self.phi() | |
if __name__ == "__main__": | |
import os | |
import shutil | |
N_TOPICS = 10 | |
DOCUMENT_LENGTH = 100 | |
FOLDER = "topicimg" | |
def vertical_topic(width, topic_index, document_length): | |
""" | |
Generate a topic whose words form a vertical bar. | |
""" | |
m = np.zeros((width, width)) | |
m[:, topic_index] = int(document_length / width) | |
return m.flatten() | |
def horizontal_topic(width, topic_index, document_length): | |
""" | |
Generate a topic whose words form a horizontal bar. | |
""" | |
m = np.zeros((width, width)) | |
m[topic_index, :] = int(document_length / width) | |
return m.flatten() | |
def save_document_image(filename, doc, zoom=2): | |
""" | |
Save document as an image. | |
doc must be a square matrix | |
""" | |
height, width = doc.shape | |
zoom = np.ones((width*zoom, width*zoom)) | |
# imsave scales pixels between 0 and 255 automatically | |
sp.misc.imsave(filename, np.kron(doc, zoom)) | |
def gen_word_distribution(n_topics, document_length): | |
""" | |
Generate a word distribution for each of the n_topics. | |
""" | |
width = n_topics / 2 | |
vocab_size = width ** 2 | |
m = np.zeros((n_topics, vocab_size)) | |
for k in range(width): | |
m[k,:] = vertical_topic(width, k, document_length) | |
for k in range(width): | |
m[k+width,:] = horizontal_topic(width, k, document_length) | |
m /= m.sum(axis=1)[:, np.newaxis] # turn counts into probabilities | |
return m | |
def gen_document(word_dist, n_topics, vocab_size, length=DOCUMENT_LENGTH, alpha=0.1): | |
""" | |
Generate a document: | |
1) Sample topic proportions from the Dirichlet distribution. | |
2) Sample a topic index from the Multinomial with the topic | |
proportions from 1). | |
3) Sample a word from the Multinomial corresponding to the topic | |
index from 2). | |
4) Go to 2) if need another word. | |
""" | |
theta = np.random.mtrand.dirichlet([alpha] * n_topics) | |
v = np.zeros(vocab_size) | |
for n in range(length): | |
z = sample_index(theta) | |
w = sample_index(word_dist[z,:]) | |
v[w] += 1 | |
return v | |
def gen_documents(word_dist, n_topics, vocab_size, n=500): | |
""" | |
Generate a document-term matrix. | |
""" | |
m = np.zeros((n, vocab_size)) | |
for i in xrange(n): | |
m[i, :] = gen_document(word_dist, n_topics, vocab_size) | |
return m | |
if os.path.exists(FOLDER): | |
shutil.rmtree(FOLDER) | |
os.mkdir(FOLDER) | |
width = N_TOPICS / 2 | |
vocab_size = width ** 2 | |
word_dist = gen_word_distribution(N_TOPICS, DOCUMENT_LENGTH) | |
matrix = gen_documents(word_dist, N_TOPICS, vocab_size) | |
sampler = LdaSampler(N_TOPICS) | |
for it, phi in enumerate(sampler.run(matrix)): | |
print "Iteration", it | |
print "Likelihood", sampler.loglikelihood() | |
if it % 5 == 0: | |
for z in range(N_TOPICS): | |
save_document_image("topicimg/topic%d-%d.png" % (it,z), | |
phi[z,:].reshape(width,-1)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment