This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# print before JIT'ing | |
print(per_channel_quantized_model) | |
VGG( | |
(features): Sequential( | |
(0): QuantizedConv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.0873441994190216, zero_point=119, paddi | |
ng=(1, 1)) | |
(1): QuantizedReLU(inplace=True) | |
(2): QuantizedConv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.19133853912353516, zero_point=148, pad | |
ding=(1, 1)) | |
(3): QuantizedReLU(inplace=True) | |
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) | |
(5): QuantizedConv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), scale=0.30967867374420166, zero_point=167, pa | |
dding=(1, 1)) | |
(6): QuantizedReLU(inplace=True) | |
(7): QuantizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), scale=0.3568974435329437, zero_point=140, pa | |
dding=(1, 1)) | |
(8): QuantizedReLU(inplace=True) | |
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) | |
(10): QuantizedConv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.46770742535591125, zero_point=142, | |
padding=(1, 1)) | |
(11): QuantizedReLU(inplace=True) | |
(12): QuantizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.5260586738586426, zero_point=139, p | |
adding=(1, 1)) | |
(13): QuantizedReLU(inplace=True) | |
(14): QuantizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.6772246956825256, zero_point=132, p | |
adding=(1, 1)) | |
(15): QuantizedReLU(inplace=True) | |
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) | |
(17): QuantizedConv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.7331007719039917, zero_point=140, p | |
adding=(1, 1)) | |
(18): QuantizedReLU(inplace=True) | |
(19): QuantizedConv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.5345668196678162, zero_point=156, p | |
adding=(1, 1)) | |
(20): QuantizedReLU(inplace=True) | |
(21): QuantizedConv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.41019582748413086, zero_point=155, | |
padding=(1, 1)) | |
(22): QuantizedReLU(inplace=True) | |
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) | |
(24): QuantizedConv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.33723706007003784, zero_point=144, | |
padding=(1, 1)) | |
(25): QuantizedReLU(inplace=True) | |
(26): QuantizedConv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.2690058946609497, zero_point=152, p | |
adding=(1, 1)) | |
(27): QuantizedReLU(inplace=True) | |
(28): QuantizedConv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.20182594656944275, zero_point=158, | |
padding=(1, 1)) | |
(29): QuantizedReLU(inplace=True) | |
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) | |
) | |
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) | |
(classifier): Sequential( | |
(0): QuantizedLinear(in_features=25088, out_features=4096, scale=0.10471174865961075, zero_point=164, qscheme= | |
torch.per_tensor_affine) | |
(1): QuantizedReLU(inplace=True) | |
(2): Dropout(p=0.5, inplace=False) | |
(3): QuantizedLinear(in_features=4096, out_features=4096, scale=0.06953950971364975, zero_point=138, qscheme=t | |
orch.per_tensor_affine) | |
(4): QuantizedReLU(inplace=True) | |
(5): Dropout(p=0.5, inplace=False) | |
(6): QuantizedLinear(in_features=4096, out_features=1000, scale=0.1511237919330597, zero_point=60, qscheme=tor | |
ch.per_tensor_affine) | |
) | |
(quant): Quantize(scale=tensor([0.0186]), zero_point=tensor([114]), dtype=torch.quint8) | |
(dequant): DeQuantize() | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment