Last active
March 13, 2020 18:13
-
-
Save vlasenkoalexey/323fc431a024fd1c42496d78cbe4d6a5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train_estimator_linear(model_dir): | |
global ARGS | |
logging.info('training for {} steps'.format(get_max_steps())) | |
config = tf.estimator.RunConfig().replace(save_summary_steps=10) | |
hooks = [] | |
if ARGS.profiler: | |
profiler_hook = tf.estimator.ProfilerHook( | |
save_steps=get_training_steps_per_epoch(), | |
output_dir=os.path.join(model_dir, "profiler"), | |
show_dataflow=True, | |
show_memory=True) | |
hooks.append(profiler_hook) | |
feature_columns = create_feature_columns() | |
estimator = tf.estimator.LinearClassifier( | |
feature_columns=feature_columns, | |
optimizer=GradientDescentOptimizer(learning_rate=0.001), | |
model_dir=model_dir, | |
config=config | |
) | |
logging.info('training and evaluating linear estimator model') | |
tf.estimator.train_and_evaluate( | |
estimator, | |
train_spec=tf.estimator.TrainSpec(input_fn=lambda: get_dataset('train'), | |
max_steps=get_max_steps(), | |
hooks=hooks), | |
eval_spec=tf.estimator.EvalSpec(input_fn=lambda: get_dataset('test'))) | |
logging.info('done evaluating estimator model') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment