Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
Pytorch TreeRNN
TreeLSTM[1] implementation in Pytorch
Based on dynet benchmarks :
Other References:
[1] : Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks,
from __future__ import print_function
import time
start = time.time()
import re
import codecs
from collections import Counter
import random
import sys, os, progressbar
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
widgets = [progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()]
parser = argparse.ArgumentParser()
help='path to data folder containing {train|dev|test}.txt, default=./data',default="./data")
parser.add_argument('--size-hidden',dest='n_hidden', type=int, help='hidden size')
parser.add_argument('--model',dest='model', help='model type rnn|lstm')
parser.add_argument('--timeout',dest='timeout',type=int, help='timeout in seconds')
parser.add_argument('--seed',dest='seed',type=int, help='seed',default=0)
parser.add_argument('--cuda', action='store_true',help='use CUDA')
args = parser.parse_args()
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
def makevar(x):
v = torch.from_numpy(np.array([x]))
if CUDA:
return Variable(v.cuda())
return Variable(v)
def zeros(dim):
v = torch.zeros(dim)
if CUDA:
return Variable(v.cuda())
return Variable(v)
def _tokenize_sexpr(s):
tokker = re.compile(r" +|[()]|[^ ()]+")
toks = [t for t in [ for match in tokker.finditer(s)] if t[0] != " "]
return toks
def _within_bracket(toks):
label = next(toks)
children = []
for tok in toks:
if tok == "(":
elif tok == ")":
return Tree(label, children)
else: children.append(Tree(tok, None))
class Tree(object):
def __init__(self, label, children=None):
self.label = label
self.children = children
def from_sexpr(string):
toks = iter(_tokenize_sexpr(string))
assert next(toks) == "("
return _within_bracket(toks)
def __str__(self):
if self.children is None: return self.label
return "[%s %s]" % (self.label, " ".join([str(c) for c in self.children]))
def isleaf(self): return self.children==None
def leaves_iter(self):
if self.isleaf():
yield self
for c in self.children:
for l in c.leaves_iter(): yield l
def leaves(self): return list(self.leaves_iter())
def nonterms_iter(self):
if not self.isleaf():
yield self
for c in self.children:
for n in c.nonterms_iter(): yield n
def nonterms(self): return list(self.nonterms_iter())
def read_dataset(filename):
return [Tree.from_sexpr(line.strip()) for line in,"r")]
def get_vocabs(trees):
label_vocab = Counter()
word_vocab = Counter()
for tree in trees:
label_vocab.update([n.label for n in tree.nonterms()])
word_vocab.update([l.label for l in tree.leaves()])
labels = [x for x,c in label_vocab.iteritems() if c > 0]
words = ["_UNK_"] + [x for x,c in word_vocab.iteritems() if c > 0]
l2i = {l:i for i,l in enumerate(labels)}
w2i = {w:i for i,w in enumerate(words)}
return l2i, w2i, labels, words
class TreeRNN(nn.Module):
def __init__(self, word_vocab, hdim, nc):
super(TreeRNN, self).__init__()
self.embed = nn.Embedding(len(word_vocab), hdim)
self.WR = nn.Linear(2*hdim, hdim)
self.WO = nn.Linear(hdim, nc)
self.WF = nn.Linear(hdim, hdim)
self.TANH = nn.Tanh()
self.RELU = nn.ReLU()
self.SOFTMAX = nn.Softmax()
self.w2i = word_vocab
def expr_for_tree(self, tree, decorate=False):
if tree.isleaf():
return self.embed(makevar(self.w2i.get(tree.label, 0)))
if len(tree.children) == 1:
expr = self.expr_for_tree(tree.children[0])
if decorate:
tree._e = expr
return expr
assert(len(tree.children) == 2), tree.children[0]
e1 = self.expr_for_tree(tree.children[0], decorate)
e2 = self.expr_for_tree(tree.children[1], decorate)
expr = self.TANH(self.WR(, e2),1)))
if decorate:
tree._e = expr
return expr
def classify(self, e):
return self.WO(self.RELU(self.WF(e)))
class TreeLSTM(nn.Module):
def __init__(self, word_vocab, hdim, nc):
super(TreeLSTM, self).__init__()
self.embed = nn.Embedding(len(word_vocab), hdim)
self.Wi = nn.Linear(hdim, hdim)
self.Wo = nn.Linear(hdim, hdim)
self.Wu = nn.Linear(hdim, hdim)
self.Ui = nn.Linear(2*hdim, hdim)
self.Uo = nn.Linear(2*hdim, hdim)
self.Uu = nn.Linear(2*hdim, hdim)
self.Uf1 = nn.Linear(hdim, hdim)
self.Uf2 = nn.Linear(hdim, hdim)
self.WO = nn.Linear(hdim, nc)
self.WF = nn.Linear(hdim, hdim)
self.SIGM = nn.Sigmoid()
self.TANH = nn.Tanh()
self.RELU = nn.ReLU()
self.SOFTMAX = nn.Softmax()
self.w2i = word_vocab
def expr_for_tree(self, tree, decorate=False):
assert(not tree.isleaf())
if len(tree.children) == 1:
emb = self.embed(makevar(self.w2i.get(tree.label, 0)))
i = self.SIGM(self.Wi(emb))
o = self.SIGM(self.Wo(emb))
u = self.TANH(self.Wu(emb))
c = i * u
h = o * self.TANH(c)
if decorate:
tree._e = (h,c)
return h, c
assert(len(tree.children) == 2), tree.children[0]
e1, c1 = self.expr_for_tree(tree.children[0], decorate)
e2, c2 = self.expr_for_tree(tree.children[1], decorate)
e =, e2),1)
i = self.SIGM(self.Ui(e))
o = self.SIGM(self.Uo(e))
f1 = self.SIGM(self.Uf1(e1))
f2 = self.SIGM(self.Uf2(e2))
u = self.TANH(self.Uu(e))
c = i * u + f1*c1 + f2*c2
h = o * self.TANH(c)
if decorate:
tree._e = (h,c)
return h,c
def classify(self, e):
return self.WO(self.RELU(self.WF(e[0])))
def evaluate(treenet, split):
eval_start = time.time()
n = correct = 0.0
pbar = progressbar.ProgressBar(widgets = widgets, maxval=len(split)).start()
for j,tree in enumerate(split):
prediction = treenet.classify(treenet.expr_for_tree(tree, False)).data
_,pred = torch.max(prediction,1)
correct += (pred == l2i[tree.label]).sum()
n += 1
eval_time = time.time() - eval_start
return correct/n , len(split)/eval_time
trn = read_dataset(os.path.join(,'train.txt'))
dev = read_dataset(os.path.join(,'dev.txt'))
tst = read_dataset(os.path.join(,'test.txt'))
l2i, w2i, i2l, i2w = get_vocabs(trn)
if args.model == 'rnn':
treenet = TreeRNN(w2i, args.n_hidden, len(l2i))
elif args.model == 'lstm':
treenet = TreeLSTM(w2i, args.n_hidden, len(l2i))
raise NotImplementedError()
if CUDA:
optimizer = optim.Adam(treenet.parameters())
criterion = nn.CrossEntropyLoss()
start_time = time.time()
print("startup time for %s model: %r" % (args.model,start_time - start))
for ITER in range(100):
closs = 0.0
cwords = 0
trn_start = time.time()
pbar = progressbar.ProgressBar(widgets = widgets, maxval=len(trn)).start()
for i,tree in enumerate(trn,1):
if args.model == 'rnn':
h = treenet.expr_for_tree(tree,True)
elif args.model == 'lstm':
h,c = treenet.expr_for_tree(tree,True)
raise NotImplementedError()
nodes = tree.nonterms()
losses = [criterion(treenet.classify(nt._e), makevar(l2i[nt.label])) for nt in nodes]
loss = sum(losses)
closs += float([0])
cwords += len(nodes)
trn_loss = closs / cwords
trn_rate = len(trn)/(time.time() - trn_start)
val_score, val_rate = evaluate(treenet, dev)
print("\ntrn loss: {:5.3f} trn speed {:5.1f} sent/sec val acc: {:5.2f} val speed {:5.1f} sent/sec".format(trn_loss,trn_rate,val_score,val_rate))
if time.time() - start_time > args.timeout:
tst_score, tst_rate = evaluate(treenet,tst)
print("test acc: {:5.2f} test speed {:5.1f} sent/sec".format(tst_score,tst_rate))

This comment has been minimized.

Copy link

@haresh-chudgar haresh-chudgar commented Apr 15, 2017

In Line 205, as per eq2 in the paper, shouldn't e be e1 + e2 instead of concat(e1,e2)?

screen shot 2017-04-14 at 10 58 28 pm


This comment has been minimized.

Copy link

@phamthuonghai phamthuonghai commented Jun 1, 2017

Eq. (2) is for child-sum tree. This is to implement the binary tree, so we should use eq. (9) to (14) instead.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.