Created
June 22, 2012 11:35
-
-
Save volkansalma/2972237 to your computer and use it in GitHub Desktop.
optimized atan2 approximation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <stdlib.h> | |
#include <math.h> | |
float atan2_approximation1(float y, float x); | |
float atan2_approximation2(float y, float x); | |
int main() | |
{ | |
float x = 1; | |
float y = 0; | |
for( y = 0; y < 2*M_PI; y+= 0.1 ) | |
{ | |
for(x = 0; x < 2*M_PI; x+= 0.1) | |
{ | |
printf("atan2 for %f,%f: %f \n", y, x, atan2(y, x)); | |
printf("approx1 for %f,%f: %f \n", y, x, atan2_approximation1(y, x)); | |
printf("approx2 for %f,%f: %f \n \n", y, x, atan2_approximation2(y, x)); | |
getch(); | |
} | |
} | |
return 0; | |
} | |
float atan2_approximation1(float y, float x) | |
{ | |
//http://pubs.opengroup.org/onlinepubs/009695399/functions/atan2.html | |
//Volkan SALMA | |
const float ONEQTR_PI = M_PI / 4.0; | |
const float THRQTR_PI = 3.0 * M_PI / 4.0; | |
float r, angle; | |
float abs_y = fabs(y) + 1e-10f; // kludge to prevent 0/0 condition | |
if ( x < 0.0f ) | |
{ | |
r = (x + abs_y) / (abs_y - x); | |
angle = THRQTR_PI; | |
} | |
else | |
{ | |
r = (x - abs_y) / (x + abs_y); | |
angle = ONEQTR_PI; | |
} | |
angle += (0.1963f * r * r - 0.9817f) * r; | |
if ( y < 0.0f ) | |
return( -angle ); // negate if in quad III or IV | |
else | |
return( angle ); | |
} | |
#define PI_FLOAT 3.14159265f | |
#define PIBY2_FLOAT 1.5707963f | |
// |error| < 0.005 | |
float atan2_approximation2( float y, float x ) | |
{ | |
if ( x == 0.0f ) | |
{ | |
if ( y > 0.0f ) return PIBY2_FLOAT; | |
if ( y == 0.0f ) return 0.0f; | |
return -PIBY2_FLOAT; | |
} | |
float atan; | |
float z = y/x; | |
if ( fabs( z ) < 1.0f ) | |
{ | |
atan = z/(1.0f + 0.28f*z*z); | |
if ( x < 0.0f ) | |
{ | |
if ( y < 0.0f ) return atan - PI_FLOAT; | |
return atan + PI_FLOAT; | |
} | |
} | |
else | |
{ | |
atan = PIBY2_FLOAT - z/(z*z + 0.28f); | |
if ( y < 0.0f ) return atan - PI_FLOAT; | |
} | |
return atan; | |
} |
approximation1 can be made branchless using std::copysign and std::fabs - which boil down to simple bitwise logic.
float atan2_approx(float y, float x) {
float abs_y = std::fabs(y) + 1e-10f; // kludge to prevent 0/0 condition
float r = (x - std::copysign(abs_y, x)) / (abs_y + std::fabs(x));
float angle = M_PI/2.f - std::copysign(M_PI/4.f, x);
angle += (0.1963f * r * r - 0.9817f) * r;
return std::copysign(angle, y);
}
I was pointing out the fact they used a compare operation to 0.0 float. That will be true very seldom (to put it mildly) and - according to my knowledge - shall be avoided. Let me think about your code snippet above (interesting kludge of 1e-10f ;)
the kludge line comes from approximation1, you were pointing out the comparisons in approximation2. Sorry, I didn't mean to answer your question, but wanted to comment on the original code because it inspired me to get to a branchless version.
The beauty of a branchless atan2 is that it can easily be performed using SIMD instructions.
very nice, indeed.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Do these lines ever get executed (in cases where 0.0f is not explicitly used as the argument, but rather is a result of some calculation that evaluates "sufficiently close" to 0.0f)?