-
-
Save vsouza/62ea409491cb605b5633 to your computer and use it in GitHub Desktop.
Simplistic script to parse the detailed AWS billing CSV file. Script displays cost of S3 operations broken down per region, bucket and usage type (either storage or network). It also sums up the amount of storage used per bucket. Output is filtered wrt to costs < 1$. See http://docs.aws.amazon.com/awsaccountbilling/latest/about/programaccess.html …
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding:utf-8 -*- | |
''' | |
Simplistic script to parse the detailed AWS billing CSV file. | |
Script displays cost of S3 operations broken down per region, bucket and usage | |
type (either storage or network). It also sums up the amount of storage used per bucket. | |
Output is filtered wrt to costs < 1$. | |
See http://docs.aws.amazon.com/awsaccountbilling/latest/about/programaccess.html for | |
how to set up programmatic access to your billing. | |
Should be simple enough to enhance this script and use it for other AWS resources | |
(EC2, EMR, etc) | |
@author: @oddskool <https://github.com/oddskool> | |
@license: BSD 3 clauses | |
''' | |
import sys | |
import csv | |
from collections import defaultdict | |
def add_type(d): | |
if d['RecordType'] == 'UsageQuantity': | |
return None | |
for field in ('Cost', 'UsageQuantity'): | |
d[field] = float(d[field]) | |
for field in ('LinkedAccountId', 'InvoiceID', 'RecordType', 'RecordId', | |
'PayerAccountId', 'SubscriptionId'): | |
del d[field] | |
return d | |
def parse(stats, d): | |
d = add_type(d) | |
if not d: | |
return | |
if d['ProductName'] != 'Amazon Simple Storage Service': | |
return | |
stats[(d['AvailabilityZone'] or 'N/A')+' * '+d['ResourceId']+' * '+d['UsageType']]['Cost'] += d['Cost'] | |
stats[(d['AvailabilityZone'] or 'N/A')+' * '+d['ResourceId']+' * '+d['UsageType']]['UsageQuantity'] += d['UsageQuantity'] | |
if __name__ == '__main__': | |
fd = open(sys.argv[1]) if len(sys.argv) > 1 else sys.stdin | |
reader = csv.reader(fd, delimiter=',', quotechar='"') | |
legend = None | |
stats = defaultdict(lambda: defaultdict(int)) | |
for row in reader: | |
if not legend: | |
legend = row | |
continue | |
d = dict(zip(legend, row)) | |
try: | |
parse(stats, d) | |
except Exception as e: | |
print e | |
print row | |
print d | |
data = [ (resource, cost_usage) for resource, cost_usage in | |
stats.iteritems() if cost_usage['Cost'] > 1.0 ] | |
data.sort(key=lambda x:x[-1]['Cost'], reverse=True) | |
for d in data: | |
print "%50s : $%.2f - %.2f GB" % (d[0],d[1]['Cost'],d[1]['UsageQuantity']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment