Created
May 13, 2022 03:19
-
-
Save vwxyzjn/18e1685945f3724a605fcf0d5730bfa5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_actionpy | |
import argparse | |
import os | |
import random | |
import time | |
from distutils.util import strtobool | |
from typing import Tuple, Union | |
import gym | |
import numpy as np | |
from dexterity import manipulation | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.distributions.normal import Normal | |
from torch.utils.tensorboard import SummaryWriter | |
from dm_env import specs | |
from gym import spaces | |
import numpy as np | |
def parse_args(): | |
# fmt: off | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), | |
help="the name of this experiment") | |
parser.add_argument("--seed", type=int, default=1, | |
help="seed of the experiment") | |
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="if toggled, `torch.backends.cudnn.deterministic=False`") | |
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="if toggled, cuda will be enabled by default") | |
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, | |
help="if toggled, this experiment will be tracked with Weights and Biases") | |
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", | |
help="the wandb's project name") | |
parser.add_argument("--wandb-entity", type=str, default=None, | |
help="the entity (team) of wandb's project") | |
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, | |
help="weather to capture videos of the agent performances (check out `videos` folder)") | |
# Algorithm specific arguments | |
parser.add_argument("--env-id", type=str, default="reach", | |
help="the id of the environment") | |
parser.add_argument("--total-timesteps", type=int, default=1000000, | |
help="total timesteps of the experiments") | |
parser.add_argument("--learning-rate", type=float, default=3e-4, | |
help="the learning rate of the optimizer") | |
parser.add_argument("--num-envs", type=int, default=1, | |
help="the number of parallel game environments") | |
parser.add_argument("--num-steps", type=int, default=2048, | |
help="the number of steps to run in each environment per policy rollout") | |
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="Toggle learning rate annealing for policy and value networks") | |
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="Use GAE for advantage computation") | |
parser.add_argument("--gamma", type=float, default=0.99, | |
help="the discount factor gamma") | |
parser.add_argument("--gae-lambda", type=float, default=0.95, | |
help="the lambda for the general advantage estimation") | |
parser.add_argument("--num-minibatches", type=int, default=32, | |
help="the number of mini-batches") | |
parser.add_argument("--update-epochs", type=int, default=10, | |
help="the K epochs to update the policy") | |
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="Toggles advantages normalization") | |
parser.add_argument("--clip-coef", type=float, default=0.2, | |
help="the surrogate clipping coefficient") | |
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.") | |
parser.add_argument("--ent-coef", type=float, default=0.0, | |
help="coefficient of the entropy") | |
parser.add_argument("--vf-coef", type=float, default=0.5, | |
help="coefficient of the value function") | |
parser.add_argument("--max-grad-norm", type=float, default=0.5, | |
help="the maximum norm for the gradient clipping") | |
parser.add_argument("--target-kl", type=float, default=None, | |
help="the target KL divergence threshold") | |
args = parser.parse_args() | |
args.batch_size = int(args.num_envs * args.num_steps) | |
args.minibatch_size = int(args.batch_size // args.num_minibatches) | |
# fmt: on | |
return args | |
def _spec_to_space(spec): | |
"""Convert dm_env.specs to gym.Spaces.""" | |
if isinstance(spec, list): | |
return spaces.Tuple([_spec_to_space(s) for s in spec]) | |
elif isinstance(spec, specs.DiscreteArray): | |
return spaces.Discrete(spec.num_values) | |
elif isinstance(spec, specs.BoundedArray): | |
return spaces.Box( | |
np.asscalar(spec.minimum), | |
np.asscalar(spec.maximum), | |
shape=spec.shape, | |
dtype=spec.dtype) | |
else: | |
raise ValueError('Unknown type for specs: {}'.format(spec)) | |
class GymFromDMEnv(gym.Env): | |
"""A wrapper that converts a dm_env.Environment to an OpenAI gym.Env.""" | |
metadata = {'render.modes': ['human', 'rgb_array']} | |
def __init__(self, env): | |
self._env = env | |
self._last_observation = None | |
self.viewer = None | |
self.game_over = False # Needed for Dopamine agents. | |
def step(self, action: int): | |
timestep = self._env.step(action) | |
self._last_observation = timestep.observation | |
reward = timestep.reward or 0. | |
if timestep.last(): | |
self.game_over = True | |
return timestep.observation, reward, timestep.last(), {} | |
def reset(self) -> np.ndarray: | |
self.game_over = False | |
timestep = self._env.reset() | |
self._last_observation = timestep.observation | |
return timestep.observation | |
def render(self, mode: str = 'rgb_array') -> Union[np.ndarray, bool]: | |
if self._last_observation is None: | |
raise ValueError('Environment not ready to render. Call reset() first.') | |
if mode == 'rgb_array': | |
return self._last_observation | |
if mode == 'human': | |
if self.viewer is None: | |
# pylint: disable=import-outside-toplevel | |
# pylint: disable=g-import-not-at-top | |
from gym.envs.classic_control import rendering | |
self.viewer = rendering.SimpleImageViewer() | |
self.viewer.imshow(self._last_observation) | |
return self.viewer.isopen | |
@property | |
def action_space(self) -> spaces.Discrete: | |
action_spec = self._env.action_spec() # type: specs.DiscreteArray | |
return spaces.Discrete(action_spec.num_values) | |
@property | |
def observation_space(self) -> spaces.Box: | |
obs_spec = self._env.observation_spec() # type: specs.Array | |
if isinstance(obs_spec, specs.BoundedArray): | |
return spaces.Box( | |
low=float(obs_spec.minimum), | |
high=float(obs_spec.maximum), | |
shape=obs_spec.shape, | |
dtype=obs_spec.dtype) | |
return spaces.Box( | |
low=-float('inf'), | |
high=float('inf'), | |
shape=obs_spec.shape, | |
dtype=obs_spec.dtype) | |
@property | |
def reward_range(self) -> Tuple[float, float]: | |
reward_spec = self._env.reward_spec() | |
if isinstance(reward_spec, specs.BoundedArray): | |
return reward_spec.minimum, reward_spec.maximum | |
return -float('inf'), float('inf') | |
# def __getattr__(self, attr): | |
# """Delegate attribute access to underlying environment.""" | |
# return getattr(self._env, attr) | |
def make_env(env_id, seed, idx, capture_video, run_name): | |
def thunk(): | |
env = manipulation.load(domain_name=env_id, task_name="state_dense") | |
env = gym.wrappers.RecordEpisodeStatistics(env) | |
if capture_video: | |
if idx == 0: | |
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") | |
env = gym.wrappers.ClipAction(env) | |
env = gym.wrappers.NormalizeObservation(env) | |
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10)) | |
env = gym.wrappers.NormalizeReward(env) | |
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10)) | |
env.seed(seed) | |
env.action_space.seed(seed) | |
env.observation_space.seed(seed) | |
return env | |
return thunk | |
def layer_init(layer, std=np.sqrt(2), bias_const=0.0): | |
torch.nn.init.orthogonal_(layer.weight, std) | |
torch.nn.init.constant_(layer.bias, bias_const) | |
return layer | |
class Agent(nn.Module): | |
def __init__(self, envs): | |
super().__init__() | |
self.critic = nn.Sequential( | |
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 1), std=1.0), | |
) | |
self.actor_mean = nn.Sequential( | |
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01), | |
) | |
self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape))) | |
def get_value(self, x): | |
return self.critic(x) | |
def get_action_and_value(self, x, action=None): | |
action_mean = self.actor_mean(x) | |
action_logstd = self.actor_logstd.expand_as(action_mean) | |
action_std = torch.exp(action_logstd) | |
probs = Normal(action_mean, action_std) | |
if action is None: | |
action = probs.sample() | |
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x) | |
if __name__ == "__main__": | |
args = parse_args() | |
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" | |
if args.track: | |
import wandb | |
wandb.init( | |
project=args.wandb_project_name, | |
entity=args.wandb_entity, | |
sync_tensorboard=True, | |
config=vars(args), | |
name=run_name, | |
monitor_gym=True, | |
save_code=True, | |
) | |
writer = SummaryWriter(f"runs/{run_name}") | |
writer.add_text( | |
"hyperparameters", | |
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), | |
) | |
# TRY NOT TO MODIFY: seeding | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
torch.backends.cudnn.deterministic = args.torch_deterministic | |
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") | |
# env setup | |
env = manipulation.load(domain_name=args.env_id, task_name="state_dense") | |
env = GymFromDMEnv(env) | |
raise | |
envs = gym.vector.SyncVectorEnv( | |
[make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)] | |
) | |
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported" | |
agent = Agent(envs).to(device) | |
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5) | |
# ALGO Logic: Storage setup | |
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) | |
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) | |
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device) | |
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) | |
dones = torch.zeros((args.num_steps, args.num_envs)).to(device) | |
values = torch.zeros((args.num_steps, args.num_envs)).to(device) | |
# TRY NOT TO MODIFY: start the game | |
global_step = 0 | |
start_time = time.time() | |
next_obs = torch.Tensor(envs.reset()).to(device) | |
next_done = torch.zeros(args.num_envs).to(device) | |
num_updates = args.total_timesteps // args.batch_size | |
for update in range(1, num_updates + 1): | |
# Annealing the rate if instructed to do so. | |
if args.anneal_lr: | |
frac = 1.0 - (update - 1.0) / num_updates | |
lrnow = frac * args.learning_rate | |
optimizer.param_groups[0]["lr"] = lrnow | |
for step in range(0, args.num_steps): | |
global_step += 1 * args.num_envs | |
obs[step] = next_obs | |
dones[step] = next_done | |
# ALGO LOGIC: action logic | |
with torch.no_grad(): | |
action, logprob, _, value = agent.get_action_and_value(next_obs) | |
values[step] = value.flatten() | |
actions[step] = action | |
logprobs[step] = logprob | |
# TRY NOT TO MODIFY: execute the game and log data. | |
next_obs, reward, done, info = envs.step(action.cpu().numpy()) | |
rewards[step] = torch.tensor(reward).to(device).view(-1) | |
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device) | |
for item in info: | |
if "episode" in item.keys(): | |
print(f"global_step={global_step}, episodic_return={item['episode']['r']}") | |
writer.add_scalar("charts/episodic_return", item["episode"]["r"], global_step) | |
writer.add_scalar("charts/episodic_length", item["episode"]["l"], global_step) | |
break | |
# bootstrap value if not done | |
with torch.no_grad(): | |
next_value = agent.get_value(next_obs).reshape(1, -1) | |
if args.gae: | |
advantages = torch.zeros_like(rewards).to(device) | |
lastgaelam = 0 | |
for t in reversed(range(args.num_steps)): | |
if t == args.num_steps - 1: | |
nextnonterminal = 1.0 - next_done | |
nextvalues = next_value | |
else: | |
nextnonterminal = 1.0 - dones[t + 1] | |
nextvalues = values[t + 1] | |
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] | |
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam | |
returns = advantages + values | |
else: | |
returns = torch.zeros_like(rewards).to(device) | |
for t in reversed(range(args.num_steps)): | |
if t == args.num_steps - 1: | |
nextnonterminal = 1.0 - next_done | |
next_return = next_value | |
else: | |
nextnonterminal = 1.0 - dones[t + 1] | |
next_return = returns[t + 1] | |
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return | |
advantages = returns - values | |
# flatten the batch | |
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape) | |
b_logprobs = logprobs.reshape(-1) | |
b_actions = actions.reshape((-1,) + envs.single_action_space.shape) | |
b_advantages = advantages.reshape(-1) | |
b_returns = returns.reshape(-1) | |
b_values = values.reshape(-1) | |
# Optimizing the policy and value network | |
b_inds = np.arange(args.batch_size) | |
clipfracs = [] | |
for epoch in range(args.update_epochs): | |
np.random.shuffle(b_inds) | |
for start in range(0, args.batch_size, args.minibatch_size): | |
end = start + args.minibatch_size | |
mb_inds = b_inds[start:end] | |
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds]) | |
logratio = newlogprob - b_logprobs[mb_inds] | |
ratio = logratio.exp() | |
with torch.no_grad(): | |
# calculate approx_kl http://joschu.net/blog/kl-approx.html | |
old_approx_kl = (-logratio).mean() | |
approx_kl = ((ratio - 1) - logratio).mean() | |
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()] | |
mb_advantages = b_advantages[mb_inds] | |
if args.norm_adv: | |
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8) | |
# Policy loss | |
pg_loss1 = -mb_advantages * ratio | |
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef) | |
pg_loss = torch.max(pg_loss1, pg_loss2).mean() | |
# Value loss | |
newvalue = newvalue.view(-1) | |
if args.clip_vloss: | |
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2 | |
v_clipped = b_values[mb_inds] + torch.clamp( | |
newvalue - b_values[mb_inds], | |
-args.clip_coef, | |
args.clip_coef, | |
) | |
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2 | |
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped) | |
v_loss = 0.5 * v_loss_max.mean() | |
else: | |
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean() | |
entropy_loss = entropy.mean() | |
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef | |
optimizer.zero_grad() | |
loss.backward() | |
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) | |
optimizer.step() | |
if args.target_kl is not None: | |
if approx_kl > args.target_kl: | |
break | |
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() | |
var_y = np.var(y_true) | |
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y | |
# TRY NOT TO MODIFY: record rewards for plotting purposes | |
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step) | |
writer.add_scalar("losses/value_loss", v_loss.item(), global_step) | |
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step) | |
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step) | |
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step) | |
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step) | |
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step) | |
writer.add_scalar("losses/explained_variance", explained_var, global_step) | |
print("SPS:", int(global_step / (time.time() - start_time))) | |
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step) | |
envs.close() | |
writer.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment