Skip to content

Instantly share code, notes, and snippets.

@waltzaround
Created March 6, 2016 08:07
Show Gist options
  • Save waltzaround/5592e999d94131ea4bc8 to your computer and use it in GitHub Desktop.
Save waltzaround/5592e999d94131ea4bc8 to your computer and use it in GitHub Desktop.
[1] Stoffregen, T.A., Faugloire, E., Yoshida, K., Flanagan, M.B., & Merhi, O. (2008). Motion sickness and postural sway in console video games. Human Factors, 50, 322-331.
[2] Draper, M.H., Viire, E.S., Furness, T.A., Gawron, V.J. (2001). Effects of image scale and system time delay on simulator sickness with head-coupled virtual environments. Human Factors, 43(1), 129-146. 14 | Field of View and Scale | Best Practices
[3] Moss, J. D., & Muth, E. R. (2011). Characteristics of Head-Mounted Displays and Their Effects on Simulator Sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(3), 308–319.
[1] Kolasinski, E.M. (1995). Simulator sickness in virtual environments (ARTI-TR-1027). Alexandria, VA: Army Research Institute for the Behavioral and Social Sciences. Retrieved from http://www.dtic.mil/cgi-bin/ GetTRDoc?AD=ADA295861
[1] Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220.
[2] Kennedy, R., Stanney, K., & Dunlap, W. (2000). Duration and exposure to virtual environments: Sickness curves during and across sessions. Presence, 9(5), 463-472.
[3] Stanney, K. M., Hale, K. S., Nahmens, I., & Kennedy, R. S. (2003). What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience. Human factors, 45(3), 504–20.
[4] So, R.H.Y., Lo, W.T., & Ho, A.T.K. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human Factors, 43(3), 452-461.
[5] Rolnick, a, & Lubow, R. E. (1991). Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics, 34(7), 867–79.
[6] Lin, J. J., Abi-Rached, H., & Lahav, M. (2004, April). Virtual guiding avatar: An effective procedure to reduce simulator sickness in virtual environments. InProceedings of the SIGCHI conference on Human factors in computing systems (pp. 719-726). ACM.
[7] Ehrlich, J.A. & Singer, M.J. (1996). Simulator sickness in stereoscopic vs. monoscopic helmet mounted displays. In: Proceedings of the Human Factors and Ergonomics Society 40th Annual Meeting.
[8] Siegel, M., & Nagata, S. (2000). Just Enough Reality: Comfortable 3-D Viewing. IEEE Transactions on Circuits and Systems for Video Technology, 10(3), 387–396.
[9] Draper, M.H., Viire, E.S., Furness, T.A., & Gawron, V.J. (2001). Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Human Factors, 43 (1), 129-146.
[10] Stoffregen, T.A., Draper, M.H., Kennedy, R.S., & Compton, D. (2002). Vestibular adaptation and aftereffects. In Stanney, K.M. (ed.), Handbook of virtual environments: Design, implementation, and applications (pp.773-790). Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
[11] Draper, M.H., Viire, E.S., Furness, T.A., Gawron, V.J. (2001). Effects of image scale and system time delay on simulator sickness with head-coupled virtual environments. Human Factors, 43(1), 129-146.
[12] Kolasinski, E.M. (1995). Simulator sickness in virtual environments (ARTI-TR-1027). Alexandria, VA: Army Research Institute for the Behavioral and Social Sciences. Retrieved from http://www.dtic.mil/cgi-bin/ GetTRDoc?AD=ADA295861
[13] Reason, J.T. & Brand, J.J. (1975). Motion Sickness. Academic Press, Inc.
[14] Welch, R.B. (2002). Adapting to virtual environments. In Stanney, K.M. (ed.). Handbook of Virtual Environments: Design, Implementation, and Application. Lawrence Erlbaum Associates, Publishers: Mahwah, NJ.
[15]Prothero, J.D., Draper, M.H., Furness, T.A., Parker, D.E., and Wells, M.J. (1999). The use of an independent visual background to reduce simulator side-effects. Aviation, Space, and Environmental Medicine, 70(3), 135-187.
[16] Lin, J. J.-W., Abi-Rached, H., Kim, D.-H., Parker, D.E., and Furness, T.A. (2002). A “natural” independent visual background reduced simulator sickness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 46, 2124-2128. 30 | Simulator Sickness | Best Practices
[17] Bowman, D. Koller, D., & Hodges, L.F. (1997). Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques,” Proceedings of the Virtual Reality Annual International Symposium, pp. 45-52.[1] Dichgans, J. & Brandt, T. (1973). Optokinetic motion sickness and pseudo-coriolis effects induced by moving visual stimuli. Acta Oto-laryngologica, 76, 339-348.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment