Last active
November 27, 2015 06:27
-
-
Save wbaek/05201f13130fa005cb33 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import numpy as np | |
class Softmax: | |
def forward(self, x): | |
return np.exp(x) / np.exp(x).sum() | |
def backward(self, y, target): | |
return y - target | |
def loss(self, y, target): | |
return - np.sum( np.log(y) * target ) | |
class ReLu: | |
@staticmethod | |
def function(x): | |
mapper = np.zeros_like( x ) | |
return np.fmax( x, mapper ) | |
@staticmethod | |
def derivative(x): | |
return np.array( [[(1 if _>0 else 0) for _ in v] for v in x] ) | |
class GradientDescent: | |
def __init__(self, learning_rate=0.01): | |
self.learning_rate = learning_rate | |
def update(self, param, gradient): | |
param -= self.learning_rate * gradient | |
return param | |
class Layer: | |
def __init__(self, input_size, output_size, | |
nonlinear_function=lambda x:x, derivative_function=lambda x:np.ones(x.shape), | |
updater=GradientDescent() ): | |
self.input_size = input_size | |
self.output_size = output_size | |
self.W = math.sqrt(6./(output_size+input_size)) * np.random.uniform( -1.0, 1.0, (output_size, input_size) ) | |
self.b = np.zeros( (output_size, 1) ) | |
self.params = [self.W, self.b] | |
self.nonlinear_function = nonlinear_function | |
self.derivative_function = derivative_function | |
self.updater = updater | |
def forward(self, x): | |
self.x = x | |
self.a = np.dot( self.W, x ) + self.b | |
return self.nonlinear_function( self.a ) | |
def backward(self, delta): | |
self.delta_a = delta * self.derivative_function(self.a) | |
return np.dot( self.W.T, self.delta_a ) | |
def get_gradient(self): | |
return ( np.dot(self.delta_a, self.x.T), np.dot(self.delta_a, np.ones((self.delta_a.shape[1], 1))) ) | |
def update(self): | |
for param, gradient in zip(self.params, self.get_gradient()): | |
param = self.updater.update(param, gradient) | |
class Network: | |
def __init__(self): | |
self.layers = [] | |
self.activation = Softmax() | |
def predict(self, x): | |
_ = x | |
for layer in self.layers: | |
_ = layer.forward( _ ) | |
return self.activation.forward( _ ) | |
def train(self, x, target): | |
y = self.predict( x ) | |
_ = self.activation.backward( y, target ) | |
for layer in reversed( self.layers ): | |
_ = layer.backward( _ ) | |
layer.update() | |
return self.activation.loss( y, target ) | |
if __name__ == "__main__": | |
n = Network() | |
n.layers.append( Layer(2, 10, ReLu.function, ReLu.derivative, updater=GradientDescent(learning_rate=0.01)) ) | |
n.layers.append( Layer(10, 2, updater=GradientDescent(learning_rate=0.01)) ) | |
n.activation = Softmax() | |
for epoch in range(0, 20): | |
loss = n.train( x = np.array([ [1, 2, 1, 2, 5, 6, 5, 6], [5, 4, 4, 5, 1, 2, 2, 1]]), | |
target = np.array([ [1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1]]) ) | |
if epoch%5 == 0: | |
print 'epoch:%04d loss:%.2f'%(epoch, loss) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment