Skip to content

@wch /heightweight.csv
Created

Embed URL

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Shiny height-weight example
sex ageYear ageMonth heightIn weightLb
f 11.91667 143 56.3 85
f 12.91667 155 62.3 105
f 12.75 153 63.3 108
f 13.41667 161 59 92
f 15.91667 191 62.5 112.5
f 14.25 171 62.5 112
f 15.41667 185 59 104
f 11.83333 142 56.5 69
f 13.33333 160 62 94.5
f 11.66667 140 53.8 68.5
f 11.58333 139 61.5 104
f 14.83333 178 61.5 103.5
f 13.08333 157 64.5 123.5
f 12.41667 149 58.3 93
f 11.91667 143 51.3 50.5
f 12.08333 145 58.8 89
f 15.91667 191 65.3 107
f 12.5 150 59.5 78.5
f 12.25 147 61.3 115
f 15 180 63.3 114
f 11.75 141 61.8 85
f 11.66667 140 53.5 81
f 13.66667 164 58 83.5
f 14.66667 176 61.3 112
f 15.41667 185 63.3 101
f 13.83333 166 61.5 103.5
f 14.58333 175 60.8 93.5
f 15 180 59 112
f 17.5 210 65.5 140
f 12.16667 146 56.3 83.5
f 14.16667 170 64.3 90
f 13.5 162 58 84
f 12.41667 149 64.3 110.5
f 11.58333 139 57.5 96
f 15.5 186 57.8 95
f 16.41667 197 61.5 121
f 14.08333 169 62.3 99.5
f 14.75 177 61.8 142.5
f 15.41667 185 65.3 118
f 15.16667 182 58.3 104.5
f 14.41667 173 62.8 102.5
f 13.83333 166 59.3 89.5
f 14 168 61.5 95
f 14.08333 169 62 98.5
f 12.5 150 61.3 94
f 15.33333 184 62.3 108
f 11.58333 139 52.8 63.5
f 12.25 147 59.8 84.5
f 12 144 59.5 93.5
f 14.75 177 61.3 112
f 14.83333 178 63.5 148.5
f 16.41667 197 64.8 112
f 12.16667 146 60 109
f 12.08333 145 59 91.5
f 12.25 147 55.8 75
f 12.08333 145 57.8 84
f 12.91667 155 61.3 107
f 13.91667 167 62.3 92.5
f 15.25 183 64.3 109.5
f 11.91667 143 55.5 84
f 15.25 183 64.5 102.5
f 15.41667 185 60 106
f 12.33333 148 56.3 77
f 12.25 147 58.3 111.5
f 12.83333 154 60 114
f 13 156 54.5 75
f 12 144 55.8 73.5
f 12.83333 154 62.8 93.5
f 12.66667 152 60.5 105
f 15.91667 191 63.3 113.5
f 15.83333 190 66.8 140
f 11.66667 140 60 77
f 12.33333 148 60.5 84.5
f 15.75 189 64.3 113.5
f 11.91667 143 58.3 77.5
f 14.83333 178 66.5 117.5
f 13.66667 164 65.3 98
f 13.08333 157 60.5 112
f 12.25 147 59.5 101
f 12.33333 148 59 95
f 14.75 177 61.3 81
f 14.25 171 61.5 91
f 14.33333 172 64.8 142
f 15.83333 190 56.8 98.5
f 15.25 183 66.5 112
f 11.91667 143 61.5 116.5
f 14.91667 179 63 98.5
f 15.5 186 57 83.5
f 15.16667 182 65.5 133
f 15.16667 182 62 91.5
f 11.83333 142 56 72.5
f 13.75 165 61.3 106.5
f 13.75 165 55.5 67
f 12.83333 154 61 122.5
f 12.5 150 54.5 74
f 12.91667 155 66 144.5
f 13.58333 163 56.5 84
f 11.75 141 56 72.5
f 12.25 147 51.5 64
f 17.5 210 62 116
f 14.25 171 63 84
f 13.91667 167 61 93.5
f 15.16667 182 64 111.5
f 12 144 61 92
f 16.08333 193 59.8 115
f 11.75 141 61.3 85
f 13.66667 164 63.3 108
f 15.5 186 63.5 108
f 14.08333 169 61.5 85
f 14.58333 175 60.3 86
f 15 180 61.3 110.5
m 13.75 165 64.8 98
m 13.08333 157 60.5 105
m 12 144 57.3 76.5
m 12.5 150 59.5 84
m 12.5 150 60.8 128
m 11.58333 139 60.5 87
m 15.75 189 67 128
m 15.25 183 64.8 111
m 12.25 147 50.5 79
m 12.16667 146 57.5 90
m 13.33333 160 60.5 84
m 13 156 61.8 112
m 14.41667 173 61.3 93
m 12.58333 151 66.3 117
m 11.75 141 53.3 84
m 12.5 150 59 99.5
m 13.66667 164 57.8 95
m 12.75 153 60 84
m 17.16667 206 68.3 134
m 20.83333 250 67.5 171.5
m 14.66667 176 63.8 98.5
m 14.66667 176 65 118.5
m 11.66667 140 59.5 94.5
m 15.41667 185 66 105
m 15 180 61.8 104
m 12.16667 146 57.3 83
m 15.25 183 66 105.5
m 11.66667 140 56.5 84
m 12.58333 151 58.3 86
m 12.58333 151 61 81
m 12 144 62.8 94
m 13.33333 160 59.3 78.5
m 14.83333 178 67.3 119.5
m 16.08333 193 66.3 133
m 13.5 162 64.5 119
m 13.66667 164 60.5 95
m 15.5 186 66 112
m 11.91667 143 57.5 75
m 14.58333 175 64 92
m 14.58333 175 68 112
m 14.58333 175 63.5 98.5
m 14.41667 173 69 112.5
m 14.16667 170 63.8 112.5
m 14.5 174 66 108
m 13.66667 164 63.5 108
m 12 144 59.5 88
m 13 156 66.3 106
m 12.41667 149 57 92
m 12 144 60 117.5
m 12.25 147 57 84
m 15.66667 188 67.3 112
m 14.08333 169 62 100
m 14.33333 172 65 112
m 12.5 150 59.5 84
m 16.08333 193 67.8 127.5
m 13.08333 157 58 80.5
m 14 168 60 93.5
m 11.66667 140 58.5 86.5
m 13 156 58.3 92.5
m 13 156 61.5 108.5
m 13.16667 158 65 121
m 15.33333 184 66.5 112
m 13 156 68.5 114
m 12 144 57 84
m 14.66667 176 61.5 81
m 14 168 66.5 111.5
m 12.41667 149 52.5 81
m 11.83333 142 55 70
m 15.66667 188 71 140
m 16.91667 203 66.5 117
m 11.83333 142 58.8 84
m 15.75 189 66.3 112
m 15.66667 188 65.8 150.5
m 16.66667 200 71 147
m 12.66667 152 59.5 105
m 14.5 174 69.8 119.5
m 13.83333 166 62.5 84
m 12.08333 145 56.5 91
m 11.91667 143 57.5 101
m 13.58333 163 65.3 117.5
m 13.83333 166 67.3 121
m 15.16667 182 67 133
m 14.41667 173 66 112
m 12.91667 155 61.8 91.5
m 13.5 162 60 105
m 14.75 177 63 111
m 14.75 177 60.5 112
m 14.58333 175 65.5 114
m 13.83333 166 62 91
m 12.5 150 59 98
m 12.5 150 61.8 118
m 15.66667 188 63.3 115.5
m 13.58333 163 66 112
m 14.25 171 61.8 112
m 13.5 162 63 91
m 11.75 141 57.5 85
m 14.5 174 63 112
m 11.83333 142 56 87.5
m 12.33333 148 60.5 118
m 11.66667 140 56.8 83.5
m 13.33333 160 64 116
m 12 144 60 89
m 17.16667 206 69.5 171.5
m 13.25 159 63.3 112
m 12.41667 149 56.3 72
m 16.08333 193 72 150
m 16.16667 194 65.3 134.5
m 12.66667 152 60.8 97
m 12.16667 146 55 71.5
m 11.58333 139 55 73.5
m 15.5 186 66.5 112
m 13.41667 161 56.8 75
m 12.75 153 64.8 128
m 16.33333 196 64.5 98
m 13.66667 164 58 84
m 13.25 159 62.8 99
m 14.83333 178 63.8 112
m 12.75 153 57.8 79.5
m 12.91667 155 57.3 80.5
m 14.83333 178 63.5 102.5
m 11.83333 142 55 76
m 13.66667 164 66.5 112
m 15.75 189 65 114
m 13.66667 164 61.5 140
m 13.91667 167 62 107.5
m 12.58333 151 59.3 87
library(ggplot2)
hw <- read.csv("heightweight.csv")
# Returns a logical vector of which values in `x` are within the min and max
# values of `range`.
in_range <- function(x, range) {
x >= min(range) & x <= max(range)
}
shinyServer(function(input, output) {
limit_data_range <- function() {
# ------------------------------------------------------------------
# Because we're using reactiveUI for x_range and y_range, they start
# out as null, then get resolved after the client and server talk a bit.
# If they are not yet set, there will be some errors in this function, so
# do nothing for now (this function will be run again).
if (is.null(input$x_range) || is.null(input$y_range)) {
return(NULL)
}
# ------------------------------------------------------------------
# Limit range of data
# Take a subset of the data, respecting the limited range
hw_sub <- hw[in_range(hw[[input$x_var]], input$x_range) &
in_range(hw[[input$y_var]], input$y_range), ]
hw_sub
}
output$main_plot <- renderPlot({
# Take a subset of the data, respecting the limited range
hw_sub <- limit_data_range()
if (is.null(hw_sub))
return()
# Get the x and y values from the non-range-limited data, for convenience
xdat <- hw[[input$x_var]]
ydat <- hw[[input$y_var]]
# ------------------------------------------------------------------
# Make the base plot
# If any models are drawn, make the points less prominent
if (input$mod_linear || input$mod_quadratic || input$mod_loess)
point_alpha <- 0.5
else
point_alpha <- 1
# Separate by sex, if requested
if (input$sex) {
aes_mapping <- aes_string(x = input$x_var, y = input$y_var,
colour = "sex", shape = "sex")
# Use different point geom specification, depending on if we're separating
# by sex.
points <- geom_point(solid = FALSE, alpha = point_alpha)
} else {
aes_mapping <- aes_string(x = input$x_var, y = input$y_var)
# Use different point geom specification, depending on if we're separating
# by sex.
points <- geom_point(shape = 21, alpha = point_alpha)
}
# Base plot
p <- ggplot(hw_sub, mapping = aes_mapping) +
points +
theme_bw() +
scale_colour_hue(l = 40) +
scale_shape(solid = FALSE) +
# # Show the original range
scale_x_continuous(limits = range(xdat)) +
scale_y_continuous(limits = range(ydat))
# ------------------------------------------------------------------
# If the range has been limited, draw lines displaying the limits
if (max(input$x_range) != max(xdat)) {
p <- p + geom_vline(xintercept = max(input$x_range), linetype = "dashed",
alpha = 0.3)
}
if (min(input$x_range) != min(xdat)) {
p <- p + geom_vline(xintercept = min(input$x_range), linetype = "dashed",
alpha = 0.3)
}
if (max(input$y_range) != max(ydat)) {
p <- p + geom_hline(yintercept = max(input$y_range), linetype = "dashed",
alpha = 0.3)
}
if (min(input$y_range) != min(ydat)) {
p <- p + geom_hline(yintercept = min(input$y_range), linetype = "dashed",
alpha = 0.3)
}
# ------------------------------------------------------------------
# Add model lines
if (input$mod_linear) {
p <- p + geom_smooth(method = lm, se = FALSE, size = 0.75,
linetype = "dotdash")
}
if (input$mod_quadratic) {
p <- p + geom_smooth(method = lm, se = FALSE, formula = y ~ x + I(x^2),
size = .75, linetype = "dashed")
}
if (input$mod_loess) {
p <- p + geom_smooth(method = loess, se = FALSE, linetype = "solid",
span = input$mod_loess_span)
}
print(p)
})
# ------------------------------------------------------------------
# Create renderUI sliders for x and y range, because their limits
# depend on the selected x and y variables.
output$x_range_slider <- renderUI({
xmin <- floor(min(hw[[input$x_var]]))
xmax <- ceiling(max(hw[[input$x_var]]))
sliderInput(inputId = "x_range",
label = paste("Limit range"),
min = xmin, max = xmax, value = c(xmin, xmax))
})
output$y_range_slider <- renderUI({
ymin <- floor(min(hw[[input$y_var]]))
ymax <- ceiling(max(hw[[input$y_var]]))
sliderInput(inputId = "y_range",
label = paste("Limit range"),
min = ymin, max = ymax, value = c(ymin, ymax))
})
# ------------------------------------------------------------------
# Functions for creating models and printing summaries
make_model <- function(model_type, formula, ...) {
# Get the subset of the data limited by the specified range
hw_sub <- limit_data_range()
if (is.null(hw_sub))
return()
# In order to get the output to print the formula in a nice way, we'll
# use do.call here with some quoting.
do.call(model_type, args = list(formula = formula, data = quote(hw_sub), ...))
}
output$mod_linear_text <- renderPrint({
formula <- paste(input$y_var, "~", input$x_var)
# Use sex as a predictor variable
if (input$sex) {
formula <- paste(formula, " * sex", sep = "")
}
summary(make_model("lm", formula))
})
output$mod_quadratic_text <- renderPrint({
formula <- paste(input$y_var, " ~ ", "I(", input$x_var, "^2) + ",
input$x_var, sep = "")
# Use sex as a predictor variable
if (input$sex) {
formula <- paste(formula, " * sex", sep = "")
}
summary(make_model("lm", formula))
})
output$mod_loess_text <- renderPrint({
formula <- paste(input$y_var, "~", input$x_var)
summary(make_model("loess", formula, span = input$mod_loess_span))
})
})
library(shiny)
shinyUI(pageWithSidebar(
headerPanel("Height and weight of schoolchildren"),
sidebarPanel(
wellPanel(
selectInput(inputId = "x_var",
label = "X variable",
choices = c("Age" = "ageYear",
"Height (inches)" = "heightIn",
"Weight (pounds)" = "weightLb"),
selected = "Age"
),
uiOutput("x_range_slider")
),
wellPanel(
selectInput(inputId = "y_var",
label = "Y variable",
choices = c("Age" = "ageYear",
"Height (inches)" = "heightIn",
"Weight (pounds)" = "weightLb"),
selected = "Height (inches)"
),
uiOutput("y_range_slider")
),
checkboxInput(inputId = "sex",
label = "Separate male/female",
value = FALSE),
wellPanel(
p(strong("Model predictions")),
checkboxInput(inputId = "mod_linear", label = "Linear (dot-dash)"),
checkboxInput(inputId = "mod_quadratic", label = "Quadratic (dashed)"),
checkboxInput(inputId = "mod_loess", label = "Locally weighted LOESS (solid)"),
conditionalPanel(
condition = "input.mod_loess == true",
sliderInput(inputId = "mod_loess_span", label = "Smoothing (alpha)",
min = 0.15, max = 1, step = 0.05, value = 0.75)
)
)
),
mainPanel(
plotOutput(outputId = "main_plot"),
conditionalPanel("input.mod_linear == true",
p(strong("Linear model")),
verbatimTextOutput(outputId = "mod_linear_text")
),
conditionalPanel("input.mod_quadratic == true",
p(strong("Quadratic model")),
verbatimTextOutput(outputId = "mod_quadratic_text")
),
conditionalPanel("input.mod_loess == true",
p(strong("LOESS model")),
conditionalPanel("input.sex == true",
p("Note: categorical variable ", code("sex"),
" cannot be used as a predictor in a LOESS model.",
" (The plot above uses two separate models.)")
),
verbatimTextOutput(outputId = "mod_loess_text")
)
)
))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.