Created
September 21, 2016 00:46
-
-
Save willguitaradmfar/12f7efb2ab9534755619ba4dce72f988 to your computer and use it in GitHub Desktop.
ConvNetJS XOR example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
const convnetjs = require("convnetjs"); | |
net = new convnetjs.Net(); | |
net.makeLayers([ | |
{type: 'input', out_sx: 1, out_sy: 1, out_depth: 2}, | |
{type: 'fc', num_neurons: 3, activation: 'tanh'}, | |
{type: 'softmax', num_classes: 2}]); | |
trainer = new convnetjs.Trainer(net); | |
var point = new convnetjs.Vol(1, 1, 2); | |
for (var iter = 0; iter < 2000; iter++) { | |
point.w = [1.0, 1.0]; | |
trainer.train(point, 0.0); | |
point.w = [1.0, 0.0]; | |
trainer.train(point, 1.0); | |
point.w = [0.0, 1.0]; | |
trainer.train(point, 1.0); | |
point.w = [0.0, 0.0]; | |
trainer.train(point, 0.0); | |
} | |
point.w = [1.0, 1.0]; | |
var prediction = net.forward(point); | |
console.log(point.w, prediction.w[1]) | |
point.w = [1.0, 0.0]; | |
var prediction = net.forward(point); | |
console.log(point.w, prediction.w[1]) | |
point.w = [0.0, 1.0]; | |
var prediction = net.forward(point); | |
console.log(point.w, prediction.w[1]) | |
point.w = [0.0, 0.0]; | |
var prediction = net.forward(point); | |
console.log(point.w, prediction.w[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment