Last active
September 1, 2020 10:22
-
-
Save wiseodd/b2697c620e39cb5b134bc6173cfe0f56 to your computer and use it in GitHub Desktop.
Generative Adversarial Nets (GAN) implementation in TensorFlow using MNIST Data.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.examples.tutorials.mnist import input_data | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.gridspec as gridspec | |
import os | |
def xavier_init(size): | |
in_dim = size[0] | |
xavier_stddev = 1. / tf.sqrt(in_dim / 2.) | |
return tf.random_normal(shape=size, stddev=xavier_stddev) | |
X = tf.placeholder(tf.float32, shape=[None, 784]) | |
D_W1 = tf.Variable(xavier_init([784, 128])) | |
D_b1 = tf.Variable(tf.zeros(shape=[128])) | |
D_W2 = tf.Variable(xavier_init([128, 1])) | |
D_b2 = tf.Variable(tf.zeros(shape=[1])) | |
theta_D = [D_W1, D_W2, D_b1, D_b2] | |
Z = tf.placeholder(tf.float32, shape=[None, 100]) | |
G_W1 = tf.Variable(xavier_init([100, 128])) | |
G_b1 = tf.Variable(tf.zeros(shape=[128])) | |
G_W2 = tf.Variable(xavier_init([128, 784])) | |
G_b2 = tf.Variable(tf.zeros(shape=[784])) | |
theta_G = [G_W1, G_W2, G_b1, G_b2] | |
DC_D_W1 = tf.Variable(xavier_init([5, 5, 1, 16])) | |
DC_D_b1 = tf.Variable(tf.zeros(shape=[16])) | |
DC_D_W2 = tf.Variable(xavier_init([3, 3, 16, 32])) | |
DC_D_b2 = tf.Variable(tf.zeros(shape=[32])) | |
DC_D_W3 = tf.Variable(xavier_init([7 * 7 * 32, 128])) | |
DC_D_b3 = tf.Variable(tf.zeros(shape=[128])) | |
DC_D_W4 = tf.Variable(xavier_init([128, 1])) | |
DC_D_b4 = tf.Variable(tf.zeros(shape=[1])) | |
theta_DC_D = [DC_D_W1, DC_D_b1, DC_D_W2, DC_D_b2, DC_D_W3, DC_D_b3, DC_D_W4, DC_D_b4] | |
def sample_Z(m, n): | |
return np.random.uniform(-1., 1., size=[m, n]) | |
def generator(z): | |
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1) | |
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2 | |
G_prob = tf.nn.sigmoid(G_log_prob) | |
return G_prob | |
def discriminator(x): | |
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1) | |
D_logit = tf.matmul(D_h1, D_W2) + D_b2 | |
D_prob = tf.nn.sigmoid(D_logit) | |
return D_prob, D_logit | |
def dc_generator(z): | |
pass | |
def dc_discriminator(x): | |
x = tf.reshape(x, shape=[-1, 28, 28, 1]) | |
conv1 = tf.nn.relu(tf.nn.conv2d(x, DC_D_W1, strides=[1, 2, 2, 1], padding='SAME') + DC_D_b1) | |
conv2 = tf.nn.relu(tf.nn.conv2d(conv1, DC_D_W2, strides=[1, 2, 2, 1], padding='SAME') + DC_D_b2) | |
conv2 = tf.reshape(conv2, shape=[-1, 7 * 7 * 32]) | |
h = tf.nn.relu(tf.matmul(conv2, DC_D_W3) + DC_D_b3) | |
logit = tf.matmul(h, DC_D_W4) + DC_D_b4 | |
prob = tf.nn.sigmoid(logit) | |
return prob, logit | |
def plot(samples): | |
fig = plt.figure(figsize=(4, 4)) | |
gs = gridspec.GridSpec(4, 4) | |
gs.update(wspace=0.05, hspace=0.05) | |
for i, sample in enumerate(samples): | |
ax = plt.subplot(gs[i]) | |
plt.axis('off') | |
ax.set_xticklabels([]) | |
ax.set_yticklabels([]) | |
ax.set_aspect('equal') | |
plt.imshow(sample.reshape(28, 28), cmap='Greys_r') | |
return fig | |
G_sample = generator(Z) | |
D_real, D_logit_real = dc_discriminator(X) | |
D_fake, D_logit_fake = dc_discriminator(G_sample) | |
# D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake)) | |
# G_loss = -tf.reduce_mean(tf.log(D_fake)) | |
# Alternative losses: | |
# ------------------- | |
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(D_logit_real, tf.ones_like(D_logit_real))) | |
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(D_logit_fake, tf.zeros_like(D_logit_fake))) | |
D_loss = D_loss_real + D_loss_fake | |
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(D_logit_fake, tf.ones_like(D_logit_fake))) | |
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_DC_D) | |
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G) | |
mb_size = 128 | |
Z_dim = 100 | |
mnist = input_data.read_data_sets('../data/MNIST_data', one_hot=True) | |
sess = tf.Session() | |
sess.run(tf.initialize_all_variables()) | |
if not os.path.exists('../out/'): | |
os.makedirs('../out/') | |
i = 0 | |
for it in range(1000000): | |
if it % 100 == 0: | |
samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)}) | |
fig = plot(samples) | |
plt.savefig('../out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight') | |
i += 1 | |
plt.close(fig) | |
X_mb, _ = mnist.train.next_batch(mb_size) | |
_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: sample_Z(mb_size, Z_dim)}) | |
_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: sample_Z(mb_size, Z_dim)}) | |
if it % 100 == 0: | |
print('Iter: {}'.format(it)) | |
print('D loss: {:.4}'. format(D_loss_curr)) | |
print('G_loss: {:.4}'.format(G_loss_curr)) | |
print() |
I am really new to GAN, after I run the code to the end, I don't know how to find the generated images, could you please teach me?
So I am a noobie in GAN but I am interested to learn it, can you comment some part of the code and the purpose for the name like
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
I understand that stddev is standard deviation but what is xavier and what is in_dim and where is size even declared in the code ?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Have you tried to implement Wasserstein GAN ?