Skip to content

Instantly share code, notes, and snippets.

@woshiyyya
Last active July 18, 2024 22:47
Show Gist options
  • Save woshiyyya/45a1d8b32228e0d67a660584ace4aa41 to your computer and use it in GitHub Desktop.
Save woshiyyya/45a1d8b32228e0d67a660584ace4aa41 to your computer and use it in GitHub Desktop.
Train Dashboard BugBash
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
from ray.train.torch import TorchTrainer
from ray.train import ScalingConfig, RunConfig
import ray.train
from torch.utils.data import Subset
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(246016, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
x = F.log_softmax(x, dim=1)
return x
def train(args, model, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to("cuda"), target.to("cuda")
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print(
'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()
)
)
if args.dry_run:
break
def test(model, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to("cuda"), target.to("cuda")
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def train_func(config):
args = config["args"]
torch.manual_seed(42)
use_cuda = True
device = "cuda" if use_cuda else "cpu"
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 0,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
if ray.train.get_context().get_local_rank() == 0:
dataset1 = datasets.MNIST('data', train=True, download=True)
torch.distributed.barrier()
else:
torch.distributed.barrier()
dataset1 = datasets.MNIST('data', train=True, download=False)
dataset2 = datasets.MNIST('data', train=False)
subset_size = int(0.3 * len(dataset1))
indices = torch.randperm(len(dataset1))[:subset_size]
dataset1 = Subset(dataset1, indices)
def collate(batch):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
transforms.Resize(128),
])
data = torch.stack([transform(img) for img, _ in batch])
target = torch.tensor([label for _, label in batch])
return data, target
train_loader = torch.utils.data.DataLoader(dataset1, collate_fn=collate, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, collate_fn=collate, **test_kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr)
model = ray.train.torch.prepare_model(model)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(args.epochs + 1):
train(args, model, train_loader, optimizer, epoch)
test(model, test_loader)
scheduler.step()
if args.save_model:
if ray.train.get_context().get_local_rank() == 0:
torch.save(model.state_dict(), f"mnist_cnn_{epoch}.pt")
torch.distributed.barrier()
print("Training Finished!")
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=1024, metavar='N',
help='input batch size for training (default: 1024)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 1024)')
parser.add_argument('--epochs', type=int, default=2, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--lr', type=float, default=1e-2, metavar='LR',
help='learning rate (default: 1e-2)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=True,
help='For Saving the current Model')
args = parser.parse_args()
trainer = TorchTrainer(
train_func,
train_loop_config={"args": args},
scaling_config=ScalingConfig(
num_workers=5,
use_gpu=True
),
run_config=RunConfig(
name="test_run",
storage_path="/mnt/cluster_storage/train_run"
)
)
trainer.fit()
if __name__ == '__main__':
main()
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
from ray.train.torch import TorchTrainer
from ray.train import ScalingConfig, RunConfig
import ray.train
from torch.utils.data import Subset
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(246016, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
x = F.log_softmax(x, dim=1)
return x
def train(args, model, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to("cuda"), target.to("cuda")
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print(
'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()
)
)
if args.dry_run:
break
def test(model, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to("cuda"), target.to("cuda")
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def train_func(config):
args = config["args"]
torch.manual_seed(42)
use_cuda = True
device = "cuda" if use_cuda else "cpu"
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 0,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
if ray.train.get_context().get_local_rank() == 0:
dataset1 = datasets.MNIST('data', train=True, download=True)
torch.distributed.barrier()
else:
torch.distributed.barrier()
dataset1 = datasets.MNIST('data', train=True, download=False)
dataset2 = datasets.MNIST('data', train=False)
subset_size = int(0.3 * len(dataset1))
indices = torch.randperm(len(dataset1))[:subset_size]
dataset1 = Subset(dataset1, indices)
def collate(batch):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
transforms.Resize(128),
])
data = torch.stack([transform(img) for img, _ in batch])
target = torch.tensor([label for _, label in batch])
return data, target
train_loader = torch.utils.data.DataLoader(dataset1, collate_fn=collate, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, collate_fn=collate, **test_kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr)
model = ray.train.torch.prepare_model(model)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(args.epochs + 1):
train(args, model, train_loader, optimizer, epoch)
test(model, test_loader)
scheduler.step()
if args.save_model:
if ray.train.get_context().get_local_rank() == 0:
torch.save(model.state_dict(), f"mnist_cnn_{epoch}.pt")
print("Training Finished!")
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 1024)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 1024)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=1e-2, metavar='LR',
help='learning rate (default: 1e-2)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=True,
help='For Saving the current Model')
args = parser.parse_args()
trainer = TorchTrainer(
train_func,
train_loop_config={"args": args},
scaling_config=ScalingConfig(
num_workers=4,
use_gpu=True
),
run_config=RunConfig(
name="test_run",
storage_path="/mnt/cluster_storage/train_run"
)
)
trainer.fit()
if __name__ == '__main__':
main()
# Task: Find the following Information
# | Number of GPUs used in this run | |
# | Number of Workers | |
# | GPU Utilization | |
# | GPU Memory Usage | |
# | Training Run Start Time | |
# | Training Run End Time | |
# | GPU ID of the World Rank 0 Worker | |
# | PID of the World Rank 1 Worker | |
# | Node IP of the World Rank 2 Worker | |
# | Logs of the World Rank 3 Worker | |
# | CPU Flamegraph of local_rank 0 worker | |
# | StackTrace of local_rank 1 worker | |
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment