Skip to content

Instantly share code, notes, and snippets.

@wyhasany
Created March 4, 2017 14:12
Show Gist options
  • Save wyhasany/5cacb533a976a6eb748554532772e1f2 to your computer and use it in GitHub Desktop.
Save wyhasany/5cacb533a976a6eb748554532772e1f2 to your computer and use it in GitHub Desktop.
Simple cross correlation implementation
/******************************************************************************
* Compilation: javac Complex.java
* Execution: java Complex
*
* Data type for complex numbers.
*
* The data type is "immutable" so once you create and initialize
* a Complex object, you cannot change it. The "final" keyword
* when declaring re and im enforces this rule, making it a
* compile-time error to change the .re or .im fields after
* they've been initialized.
*
* % java Complex
* a = 5.0 + 6.0i
* b = -3.0 + 4.0i
* Re(a) = 5.0
* Im(a) = 6.0
* b + a = 2.0 + 10.0i
* a - b = 8.0 + 2.0i
* a * b = -39.0 + 2.0i
* b * a = -39.0 + 2.0i
* a / b = 0.36 - 1.52i
* (a / b) * b = 5.0 + 6.0i
* conj(a) = 5.0 - 6.0i
* |a| = 7.810249675906654
* tan(a) = -6.685231390246571E-6 + 1.0000103108981198i
*
******************************************************************************/
/**
* The {@code Complex} class represents a complex number.
* Complex numbers are immutable: their values cannot be changed after they
* are created.
* It includes methods for addition, subtraction, multiplication, division,
* conjugation, and other common functions on complex numbers.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/99scientific">Section 9.9</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class Complex {
private final double re; // the real part
private final double im; // the imaginary part
/**
* Initializes a complex number from the specified real and imaginary parts.
*
* @param real the real part
* @param imag the imaginary part
*/
public Complex(double real, double imag) {
re = real;
im = imag;
}
/**
* Returns a string representation of this complex number.
*
* @return a string representation of this complex number,
* of the form 34 - 56i.
*/
public String toString() {
if (im == 0) return re + "";
if (re == 0) return im + "i";
if (im < 0) return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}
/**
* Returns the absolute value of this complex number.
* This quantity is also known as the <em>modulus</em> or <em>magnitude</em>.
*
* @return the absolute value of this complex number
*/
public double abs() {
return Math.hypot(re, im);
}
/**
* Returns the phase of this complex number.
* This quantity is also known as the <em>angle</em> or <em>argument</em>.
*
* @return the phase of this complex number, a real number between -pi and pi
*/
public double phase() {
return Math.atan2(im, re);
}
/**
* Returns the sum of this complex number and the specified complex number.
*
* @param that the other complex number
* @return the complex number whose value is {@code (this + that)}
*/
public Complex plus(Complex that) {
double real = this.re + that.re;
double imag = this.im + that.im;
return new Complex(real, imag);
}
/**
* Returns the result of subtracting the specified complex number from
* this complex number.
*
* @param that the other complex number
* @return the complex number whose value is {@code (this - that)}
*/
public Complex minus(Complex that) {
double real = this.re - that.re;
double imag = this.im - that.im;
return new Complex(real, imag);
}
/**
* Returns the product of this complex number and the specified complex number.
*
* @param that the other complex number
* @return the complex number whose value is {@code (this * that)}
*/
public Complex times(Complex that) {
double real = this.re * that.re - this.im * that.im;
double imag = this.re * that.im + this.im * that.re;
return new Complex(real, imag);
}
/**
* Returns the product of this complex number and the specified scalar.
*
* @param alpha the scalar
* @return the complex number whose value is {@code (alpha * this)}
*/
public Complex scale(double alpha) {
return new Complex(alpha * re, alpha * im);
}
/**
* Returns the product of this complex number and the specified scalar.
*
* @param alpha the scalar
* @return the complex number whose value is {@code (alpha * this)}
* @deprecated Replaced by {@link #scale(double)}.
*/
@Deprecated
public Complex times(double alpha) {
return new Complex(alpha * re, alpha * im);
}
/**
* Returns the complex conjugate of this complex number.
*
* @return the complex conjugate of this complex number
*/
public Complex conjugate() {
return new Complex(re, -im);
}
/**
* Returns the reciprocal of this complex number.
*
* @return the complex number whose value is {@code (1 / this)}
*/
public Complex reciprocal() {
double scale = re*re + im*im;
return new Complex(re / scale, -im / scale);
}
/**
* Returns the real part of this complex number.
*
* @return the real part of this complex number
*/
public double re() {
return re;
}
/**
* Returns the imaginary part of this complex number.
*
* @return the imaginary part of this complex number
*/
public double im() {
return im;
}
/**
* Returns the result of dividing the specified complex number into
* this complex number.
*
* @param that the other complex number
* @return the complex number whose value is {@code (this / that)}
*/
public Complex divides(Complex that) {
return this.times(that.reciprocal());
}
/**
* Returns the complex exponential of this complex number.
*
* @return the complex exponential of this complex number
*/
public Complex exp() {
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
}
/**
* Returns the complex sine of this complex number.
*
* @return the complex sine of this complex number
*/
public Complex sin() {
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
}
/**
* Returns the complex cosine of this complex number.
*
* @return the complex cosine of this complex number
*/
public Complex cos() {
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
}
/**
* Returns the complex tangent of this complex number.
*
* @return the complex tangent of this complex number
*/
public Complex tan() {
return sin().divides(cos());
}
/**
* Unit tests the {@code Complex} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
Complex a = new Complex(5.0, 6.0);
Complex b = new Complex(-3.0, 4.0);
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("Re(a) = " + a.re());
System.out.println("Im(a) = " + a.im());
System.out.println("b + a = " + b.plus(a));
System.out.println("a - b = " + a.minus(b));
System.out.println("a * b = " + a.times(b));
System.out.println("b * a = " + b.times(a));
System.out.println("a / b = " + a.divides(b));
System.out.println("(a / b) * b = " + a.divides(b).times(b));
System.out.println("conj(a) = " + a.conjugate());
System.out.println("|a| = " + a.abs());
System.out.println("tan(a) = " + a.tan());
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/
public class CrossCorrelation {
public static void main(String[] args) {
double[] source = {1, 2, 3, 4, 5, 6, 7, 8};
double[] target = {1, 2, 3, 0, 0, 0, 0, 0};
int n = source.length;
Complex[] sourceComplex = new Complex[n];
Complex[] targetComplex = new Complex[n];
for (int i = 0; i < n; i++) {
sourceComplex[i] = new Complex(source[i], 0);
targetComplex[i] = new Complex(target[i], 0);
}
Complex[] fftS = FFT.fft(sourceComplex);
Complex[] fftT = FFT.fft(targetComplex);
for (int i = 0; i < fftS.length; i++) {
fftS[i] = fftS[i].conjugate();
}
Complex[] timeProduct = new Complex[fftS.length];
for (int i = 0; i < fftS.length; i++) {
timeProduct[i] = fftS[i].times(fftT[i]);
}
Complex[] y = FFT.ifft(timeProduct);
System.out.println("id:\txcorr abs:\t\t\txcorr complexes:");
for (int i = 0; i < y.length; i++) {
Complex c = y[i];
System.out.println(i + "\t" +c.abs() + "\t\t\t" + c.toString());
}
System.out.println("Max arg: " + argmax(y)); //I suppose it should equals 0
}
public static int argmax(Complex[] a)
{
double y = Double.MIN_VALUE;
int idx = -1;
for(int x = 0; x < a.length; x++)
{
if(a[x].abs() > y)
{
y = a[x].abs();
idx = x;
}
}
return idx;
}
}
/******************************************************************************
* Compilation: javac FFT.java
* Execution: java FFT n
* Dependencies: Complex.java
*
* Compute the FFT and inverse FFT of a length n complex sequence.
* Bare bones implementation that runs in O(n log n) time. Our goal
* is to optimize the clarity of the code, rather than performance.
*
* Limitations
* -----------
* - assumes n is a power of 2
*
* - not the most memory efficient algorithm (because it uses
* an object type for representing complex numbers and because
* it re-allocates memory for the subarray, instead of doing
* in-place or reusing a single temporary array)
*
*
* % java FFT 4
* x
* -------------------
* -0.03480425839330703
* 0.07910192950176387
* 0.7233322451735928
* 0.1659819820667019
*
* y = fft(x)
* -------------------
* 0.9336118983487516
* -0.7581365035668999 + 0.08688005256493803i
* 0.44344407521182005
* -0.7581365035668999 - 0.08688005256493803i
*
* z = ifft(y)
* -------------------
* -0.03480425839330703
* 0.07910192950176387 + 2.6599344570851287E-18i
* 0.7233322451735928
* 0.1659819820667019 - 2.6599344570851287E-18i
*
* c = cconvolve(x, x)
* -------------------
* 0.5506798633981853
* 0.23461407150576394 - 4.033186818023279E-18i
* -0.016542951108772352
* 0.10288019294318276 + 4.033186818023279E-18i
*
* d = convolve(x, x)
* -------------------
* 0.001211336402308083 - 3.122502256758253E-17i
* -0.005506167987577068 - 5.058885073636224E-17i
* -0.044092969479563274 + 2.1934338938072244E-18i
* 0.10288019294318276 - 3.6147323062478115E-17i
* 0.5494685269958772 + 3.122502256758253E-17i
* 0.240120239493341 + 4.655566391833896E-17i
* 0.02755001837079092 - 2.1934338938072244E-18i
* 4.01805098805014E-17i
*
******************************************************************************/
/**
* The {@code FFT} class provides methods for computing the
* FFT (Fast-Fourier Transform), inverse FFT, linear convolution,
* and circular convolution of a complex array.
* <p>
* It is a bare-bones implementation that runs in <em>n</em> log <em>n</em> time,
* where <em>n</em> is the length of the complex array. For simplicity,
* <em>n</em> must be a power of 2.
* Our goal is to optimize the clarity of the code, rather than performance.
* It is not the most memory efficient implementation because it uses
* objects to represents complex numbers and it it re-allocates memory
* for the subarray, instead of doing in-place or reusing a single temporary array.
*
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/99scientific">Section 9.9</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class FFT {
private static final Complex ZERO = new Complex(0, 0);
// Do not instantiate.
private FFT() { }
/**
* Returns the FFT of the specified complex array.
*
* @param x the complex array
* @return the FFT of the complex array {@code x}
* @throws IllegalArgumentException if the length of {@code x} is not a power of 2
*/
public static Complex[] fft(Complex[] x) {
int n = x.length;
// base case
if (n == 1) {
return new Complex[] { x[0] };
}
// radix 2 Cooley-Tukey FFT
if (n % 2 != 0) {
throw new IllegalArgumentException("n is not a power of 2");
}
// fft of even terms
Complex[] even = new Complex[n/2];
for (int k = 0; k < n/2; k++) {
even[k] = x[2*k];
}
Complex[] q = fft(even);
// fft of odd terms
Complex[] odd = even; // reuse the array
for (int k = 0; k < n/2; k++) {
odd[k] = x[2*k + 1];
}
Complex[] r = fft(odd);
// combine
Complex[] y = new Complex[n];
for (int k = 0; k < n/2; k++) {
double kth = -2 * k * Math.PI / n;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = q[k].plus(wk.times(r[k]));
y[k + n/2] = q[k].minus(wk.times(r[k]));
}
return y;
}
/**
* Returns the inverse FFT of the specified complex array.
*
* @param x the complex array
* @return the inverse FFT of the complex array {@code x}
* @throws IllegalArgumentException if the length of {@code x} is not a power of 2
*/
public static Complex[] ifft(Complex[] x) {
int n = x.length;
Complex[] y = new Complex[n];
// take conjugate
for (int i = 0; i < n; i++) {
y[i] = x[i].conjugate();
}
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < n; i++) {
y[i] = y[i].conjugate();
}
// divide by n
for (int i = 0; i < n; i++) {
y[i] = y[i].scale(1.0 / n);
}
return y;
}
/**
* Returns the circular convolution of the two specified complex arrays.
*
* @param x one complex array
* @param y the other complex array
* @return the circular convolution of {@code x} and {@code y}
* @throws IllegalArgumentException if the length of {@code x} does not equal
* the length of {@code y} or if the length is not a power of 2
*/
public static Complex[] cconvolve(Complex[] x, Complex[] y) {
// should probably pad x and y with 0s so that they have same length
// and are powers of 2
if (x.length != y.length) {
throw new IllegalArgumentException("Dimensions don't agree");
}
int n = x.length;
// compute FFT of each sequence
Complex[] a = fft(x);
Complex[] b = fft(y);
// point-wise multiply
Complex[] c = new Complex[n];
for (int i = 0; i < n; i++) {
c[i] = a[i].times(b[i]);
}
// compute inverse FFT
return ifft(c);
}
/**
* Returns the linear convolution of the two specified complex arrays.
*
* @param x one complex array
* @param y the other complex array
* @return the linear convolution of {@code x} and {@code y}
* @throws IllegalArgumentException if the length of {@code x} does not equal
* the length of {@code y} or if the length is not a power of 2
*/
public static Complex[] convolve(Complex[] x, Complex[] y) {
Complex[] a = new Complex[2*x.length];
for (int i = 0; i < x.length; i++)
a[i] = x[i];
for (int i = x.length; i < 2*x.length; i++)
a[i] = ZERO;
Complex[] b = new Complex[2*y.length];
for (int i = 0; i < y.length; i++)
b[i] = y[i];
for (int i = y.length; i < 2*y.length; i++)
b[i] = ZERO;
return cconvolve(a, b);
}
// display an array of Complex numbers to standard output
private static void show(Complex[] x, String title) {
StdOut.println(title);
StdOut.println("-------------------");
for (int i = 0; i < x.length; i++) {
StdOut.println(x[i]);
}
StdOut.println();
}
/***************************************************************************
* Test client.
***************************************************************************/
/**
* Unit tests the {@code FFT} class.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
Complex[] x = new Complex[n];
// original data
for (int i = 0; i < n; i++) {
x[i] = new Complex(i, 0);
x[i] = new Complex(StdRandom.uniform(-1.0, 1.0), 0);
}
show(x, "x");
// FFT of original data
Complex[] y = fft(x);
show(y, "y = fft(x)");
// take inverse FFT
Complex[] z = ifft(y);
show(z, "z = ifft(y)");
// circular convolution of x with itself
Complex[] c = cconvolve(x, x);
show(c, "c = cconvolve(x, x)");
// linear convolution of x with itself
Complex[] d = convolve(x, x);
show(d, "d = convolve(x, x)");
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment