Created
July 17, 2014 06:27
-
-
Save x-or/19ea37ca62e7fdaf72f4 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from PIL import Image | |
def digital_reverse(n, length, base): | |
r = 0 | |
for _ in range(length): | |
r = base*r + n % base | |
n /= base | |
return r | |
assert digital_reverse(123, 3, 10) == 321 | |
assert digital_reverse(54321, 5, 10) == 12345 | |
assert digital_reverse(0x123, 3, 16) == 0x321 | |
assert digital_reverse(0x54321, 5, 16) == 0x12345 | |
def rule15_10(x, modulo): | |
X = np.empty(x.shape, dtype=int) | |
I = x.shape[0] | |
J = x.shape[1] | |
for i in xrange(I): | |
ip1 = (i + 1) % I | |
for j in xrange(J): | |
jp1 = (j + 1) % J | |
t = x[i, j] - x[i, jp1] - x[ip1, j] + x[ip1, jp1] | |
X[i, j] = t % modulo | |
return X | |
def save_matrix(m, fn, modulo): | |
image = Image.new("L", (m.shape[1], m.shape[0]), 0) | |
pix = image.load() | |
for y in xrange(m.shape[0]): | |
for x in xrange(m.shape[1]): | |
pix[x, y] = 255*m[y, x]/(modulo-1) | |
image.save(fn, "png") | |
if __name__ == '__main__': | |
# Image size | |
power = 5 | |
modulo = 3 | |
size = modulo**power | |
print "size", size | |
permuted_diagonal = np.zeros((size, size), int) | |
for i in xrange(size): | |
ri = digital_reverse(i, power, modulo) | |
permuted_diagonal[ri, i] = 1 | |
state = permuted_diagonal | |
for step in xrange(size*power): | |
print "step =", step | |
save_matrix(state, "img-p%d-g%05d.png"%(power, step), modulo) | |
state = rule15_10(state, modulo) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from PIL import Image | |
def digital_reverse(n, length, base): | |
r = 0 | |
for _ in range(length): | |
r = base*r + n % base | |
n /= base | |
return r | |
assert digital_reverse(123, 3, 10) == 321 | |
assert digital_reverse(54321, 5, 10) == 12345 | |
assert digital_reverse(0x123, 3, 16) == 0x321 | |
assert digital_reverse(0x54321, 5, 16) == 0x12345 | |
def rule511(x, modulo): | |
X = np.empty(x.shape, dtype=int) | |
I = x.shape[0] | |
J = x.shape[1] | |
for i in xrange(I): | |
im1 = (i - 1) % I | |
ip1 = (i + 1) % I | |
for j in xrange(J): | |
jm1 = (j - 1) % J | |
jp1 = (j + 1) % J | |
t = x[im1, jm1] + x[i, jm1] + x[ip1, jm1] | |
t += x[im1, j] + x[i, j] + x[ip1, j] | |
t += x[im1, jp1] + x[i, jp1] + x[ip1, jp1] | |
X[i, j] = t % modulo | |
return X | |
def save_matrix(m, fn, modulo): | |
image = Image.new("L", (m.shape[1], m.shape[0]), 0) | |
pix = image.load() | |
for y in xrange(m.shape[0]): | |
for x in xrange(m.shape[1]): | |
pix[x, y] = 255*m[y, x]/(modulo-1) | |
image.save(fn, "png") | |
if __name__ == '__main__': | |
# Image size | |
power = 5 | |
modulo = 3 | |
size = modulo**power | |
print "size", size | |
permuted_diagonal = np.zeros((size, size), int) | |
for i in xrange(size): | |
ri = digital_reverse(i, power, modulo) | |
permuted_diagonal[ri, i] = 1 | |
state = permuted_diagonal | |
for step in xrange(size*power): | |
print "step =", step | |
save_matrix(state, "img-p%d-g%05d.png"%(power, step), modulo) | |
state = rule511(state, modulo) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from PIL import Image | |
def digital_reverse(n, length, base): | |
r = 0 | |
for _ in range(length): | |
r = base*r + n % base | |
n /= base | |
return r | |
assert digital_reverse(123, 3, 10) == 321 | |
assert digital_reverse(54321, 5, 10) == 12345 | |
assert digital_reverse(0x123, 3, 16) == 0x321 | |
assert digital_reverse(0x54321, 5, 16) == 0x12345 | |
def rule511_corner(x, modulo): | |
X = np.empty(x.shape, dtype=int) | |
I = x.shape[0] | |
J = x.shape[1] | |
for i in xrange(I): | |
ip1 = (i + 1) % I | |
ip2 = (i + 2) % I | |
for j in xrange(J): | |
jp1 = (j + 1) % J | |
jp2 = (j + 2) % J | |
t = x[i, j] + x[ip1, j] + x[ip2, j] | |
t += x[i, jp1] + x[ip1, jp1] + x[ip2, jp1] | |
t += x[i, jp2] + x[ip1, jp2] + x[ip2, jp2] | |
X[i, j] = t % modulo | |
return X | |
def save_matrix(m, fn, modulo): | |
image = Image.new("L", (m.shape[1], m.shape[0]), 0) | |
pix = image.load() | |
for y in xrange(m.shape[0]): | |
for x in xrange(m.shape[1]): | |
pix[x, y] = 255*m[y, x]/(modulo-1) | |
image.save(fn, "png") | |
if __name__ == '__main__': | |
# Image size | |
power = 5 | |
modulo = 3 | |
size = modulo**power | |
print "size", size | |
permuted_diagonal = np.zeros((size, size), int) | |
for i in xrange(size): | |
ri = digital_reverse(i, power, modulo) | |
permuted_diagonal[ri, i] = 1 | |
state = permuted_diagonal | |
for step in xrange(size*power): | |
print "step =", step | |
save_matrix(state, "img-p%d-g%05d.png"%(power, step), modulo) | |
state = rule511_corner(state, modulo) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment