Created
July 3, 2014 09:51
-
-
Save x-or/b2397a35e1bd68439914 to your computer and use it in GitHub Desktop.
reverse_rule15_0_sliding_color
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# Copyright (C) 2012, Almar Klein, Ant1, Marius van Voorden | |
# | |
# This code is subject to the (new) BSD license: | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of the <organization> nor the | |
# names of its contributors may be used to endorse or promote products | |
# derived from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
""" Module images2gif | |
Provides functionality for reading and writing animated GIF images. | |
Use writeGif to write a series of numpy arrays or PIL images as an | |
animated GIF. Use readGif to read an animated gif as a series of numpy | |
arrays. | |
Note that since July 2004, all patents on the LZW compression patent have | |
expired. Therefore the GIF format may now be used freely. | |
Acknowledgements | |
---------------- | |
Many thanks to Ant1 for: | |
* noting the use of "palette=PIL.Image.ADAPTIVE", which significantly | |
improves the results. | |
* the modifications to save each image with its own palette, or optionally | |
the global palette (if its the same). | |
Many thanks to Marius van Voorden for porting the NeuQuant quantization | |
algorithm of Anthony Dekker to Python (See the NeuQuant class for its | |
license). | |
Many thanks to Alex Robinson for implementing the concept of subrectangles, | |
which (depening on image content) can give a very significant reduction in | |
file size. | |
This code is based on gifmaker (in the scripts folder of the source | |
distribution of PIL) | |
Usefull links | |
------------- | |
* http://tronche.com/computer-graphics/gif/ | |
* http://en.wikipedia.org/wiki/Graphics_Interchange_Format | |
* http://www.w3.org/Graphics/GIF/spec-gif89a.txt | |
""" | |
# todo: This module should be part of imageio (or at least based on) | |
import os, time | |
try: | |
import PIL | |
from PIL import Image | |
from PIL.GifImagePlugin import getheader, getdata | |
except ImportError: | |
PIL = None | |
try: | |
import numpy as np | |
except ImportError: | |
np = None | |
def get_cKDTree(): | |
try: | |
from scipy.spatial import cKDTree | |
except ImportError: | |
cKDTree = None | |
return cKDTree | |
# getheader gives a 87a header and a color palette (two elements in a list). | |
# getdata()[0] gives the Image Descriptor up to (including) "LZW min code size". | |
# getdatas()[1:] is the image data itself in chuncks of 256 bytes (well | |
# technically the first byte says how many bytes follow, after which that | |
# amount (max 255) follows). | |
def checkImages(images): | |
""" checkImages(images) | |
Check numpy images and correct intensity range etc. | |
The same for all movie formats. | |
""" | |
# Init results | |
images2 = [] | |
for im in images: | |
if PIL and isinstance(im, PIL.Image.Image): | |
# We assume PIL images are allright | |
images2.append(im) | |
elif np and isinstance(im, np.ndarray): | |
# Check and convert dtype | |
if im.dtype == np.uint8: | |
images2.append(im) # Ok | |
elif im.dtype in [np.float32, np.float64]: | |
im = im.copy() | |
im[im<0] = 0 | |
im[im>1] = 1 | |
im *= 255 | |
images2.append( im.astype(np.uint8) ) | |
else: | |
im = im.astype(np.uint8) | |
images2.append(im) | |
# Check size | |
if im.ndim == 2: | |
pass # ok | |
elif im.ndim == 3: | |
if im.shape[2] not in [3,4]: | |
raise ValueError('This array can not represent an image.') | |
else: | |
raise ValueError('This array can not represent an image.') | |
else: | |
raise ValueError('Invalid image type: ' + str(type(im))) | |
# Done | |
return images2 | |
def intToBin(i): | |
""" Integer to two bytes """ | |
# devide in two parts (bytes) | |
i1 = i % 256 | |
i2 = int( i/256) | |
# make string (little endian) | |
return chr(i1) + chr(i2) | |
class GifWriter: | |
""" GifWriter() | |
Class that contains methods for helping write the animated GIF file. | |
""" | |
def getheaderAnim(self, im): | |
""" getheaderAnim(im) | |
Get animation header. To replace PILs getheader()[0] | |
""" | |
bb = "GIF89a" | |
bb += intToBin(im.size[0]) | |
bb += intToBin(im.size[1]) | |
bb += "\x87\x00\x00" | |
return bb | |
def getImageDescriptor(self, im, xy=None): | |
""" getImageDescriptor(im, xy=None) | |
Used for the local color table properties per image. | |
Otherwise global color table applies to all frames irrespective of | |
whether additional colors comes in play that require a redefined | |
palette. Still a maximum of 256 color per frame, obviously. | |
Written by Ant1 on 2010-08-22 | |
Modified by Alex Robinson in Janurari 2011 to implement subrectangles. | |
""" | |
# Defaule use full image and place at upper left | |
if xy is None: | |
xy = (0,0) | |
# Image separator, | |
bb = '\x2C' | |
# Image position and size | |
bb += intToBin( xy[0] ) # Left position | |
bb += intToBin( xy[1] ) # Top position | |
bb += intToBin( im.size[0] ) # image width | |
bb += intToBin( im.size[1] ) # image height | |
# packed field: local color table flag1, interlace0, sorted table0, | |
# reserved00, lct size111=7=2^(7+1)=256. | |
bb += '\x87' | |
# LZW minimum size code now comes later, begining of [image data] blocks | |
return bb | |
def getAppExt(self, loops=float('inf')): | |
""" getAppExt(loops=float('inf')) | |
Application extention. This part specifies the amount of loops. | |
If loops is 0 or inf, it goes on infinitely. | |
""" | |
if loops==0 or loops==float('inf'): | |
loops = 2**16-1 | |
#bb = "" # application extension should not be used | |
# (the extension interprets zero loops | |
# to mean an infinite number of loops) | |
# Mmm, does not seem to work | |
if True: | |
bb = "\x21\xFF\x0B" # application extension | |
bb += "NETSCAPE2.0" | |
bb += "\x03\x01" | |
bb += intToBin(loops) | |
bb += '\x00' # end | |
return bb | |
def getGraphicsControlExt(self, duration=0.1, dispose=2): | |
""" getGraphicsControlExt(duration=0.1, dispose=2) | |
Graphics Control Extension. A sort of header at the start of | |
each image. Specifies duration and transparancy. | |
Dispose | |
------- | |
* 0 - No disposal specified. | |
* 1 - Do not dispose. The graphic is to be left in place. | |
* 2 - Restore to background color. The area used by the graphic | |
must be restored to the background color. | |
* 3 - Restore to previous. The decoder is required to restore the | |
area overwritten by the graphic with what was there prior to | |
rendering the graphic. | |
* 4-7 -To be defined. | |
""" | |
bb = '\x21\xF9\x04' | |
bb += chr((dispose & 3) << 2) # low bit 1 == transparency, | |
# 2nd bit 1 == user input , next 3 bits, the low two of which are used, | |
# are dispose. | |
bb += intToBin( int(duration*100) ) # in 100th of seconds | |
bb += '\x00' # no transparant color | |
bb += '\x00' # end | |
return bb | |
def handleSubRectangles(self, images, subRectangles): | |
""" handleSubRectangles(images) | |
Handle the sub-rectangle stuff. If the rectangles are given by the | |
user, the values are checked. Otherwise the subrectangles are | |
calculated automatically. | |
""" | |
if isinstance(subRectangles, (tuple,list)): | |
# xy given directly | |
# Check xy | |
xy = subRectangles | |
if xy is None: | |
xy = (0,0) | |
if hasattr(xy, '__len__'): | |
if len(xy) == len(images): | |
xy = [xxyy for xxyy in xy] | |
else: | |
raise ValueError("len(xy) doesn't match amount of images.") | |
else: | |
xy = [xy for im in images] | |
xy[0] = (0,0) | |
else: | |
# Calculate xy using some basic image processing | |
# Check Numpy | |
if np is None: | |
raise RuntimeError("Need Numpy to use auto-subRectangles.") | |
# First make numpy arrays if required | |
for i in range(len(images)): | |
im = images[i] | |
if isinstance(im, Image.Image): | |
tmp = im.convert() # Make without palette | |
a = np.asarray(tmp) | |
if len(a.shape)==0: | |
raise MemoryError("Too little memory to convert PIL image to array") | |
images[i] = a | |
# Determine the sub rectangles | |
images, xy = self.getSubRectangles(images) | |
# Done | |
return images, xy | |
def getSubRectangles(self, ims): | |
""" getSubRectangles(ims) | |
Calculate the minimal rectangles that need updating each frame. | |
Returns a two-element tuple containing the cropped images and a | |
list of x-y positions. | |
Calculating the subrectangles takes extra time, obviously. However, | |
if the image sizes were reduced, the actual writing of the GIF | |
goes faster. In some cases applying this method produces a GIF faster. | |
""" | |
# Check image count | |
if len(ims) < 2: | |
return ims, [(0,0) for i in ims] | |
# We need numpy | |
if np is None: | |
raise RuntimeError("Need Numpy to calculate sub-rectangles. ") | |
# Prepare | |
ims2 = [ims[0]] | |
xy = [(0,0)] | |
t0 = time.time() | |
# Iterate over images | |
prev = ims[0] | |
for im in ims[1:]: | |
# Get difference, sum over colors | |
diff = np.abs(im-prev) | |
if diff.ndim==3: | |
diff = diff.sum(2) | |
# Get begin and end for both dimensions | |
X = np.argwhere(diff.sum(0)) | |
Y = np.argwhere(diff.sum(1)) | |
# Get rect coordinates | |
if X.size and Y.size: | |
x0, x1 = X[0], X[-1]+1 | |
y0, y1 = Y[0], Y[-1]+1 | |
else: # No change ... make it minimal | |
x0, x1 = 0, 2 | |
y0, y1 = 0, 2 | |
# Cut out and store | |
im2 = im[y0:y1,x0:x1] | |
prev = im | |
ims2.append(im2) | |
xy.append((x0,y0)) | |
# Done | |
#print('%1.2f seconds to determine subrectangles of %i images' % | |
# (time.time()-t0, len(ims2)) ) | |
return ims2, xy | |
def convertImagesToPIL(self, images, dither, nq=0): | |
""" convertImagesToPIL(images, nq=0) | |
Convert images to Paletted PIL images, which can then be | |
written to a single animaged GIF. | |
""" | |
# Convert to PIL images | |
images2 = [] | |
for im in images: | |
if isinstance(im, Image.Image): | |
images2.append(im) | |
elif np and isinstance(im, np.ndarray): | |
if im.ndim==3 and im.shape[2]==3: | |
im = Image.fromarray(im,'RGB') | |
elif im.ndim==3 and im.shape[2]==4: | |
im = Image.fromarray(im[:,:,:3],'RGB') | |
elif im.ndim==2: | |
im = Image.fromarray(im,'L') | |
images2.append(im) | |
# Convert to paletted PIL images | |
images, images2 = images2, [] | |
if nq >= 1: | |
# NeuQuant algorithm | |
for im in images: | |
im = im.convert("RGBA") # NQ assumes RGBA | |
nqInstance = NeuQuant(im, int(nq)) # Learn colors from image | |
if dither: | |
im = im.convert("RGB").quantize(palette=nqInstance.paletteImage()) | |
else: | |
im = nqInstance.quantize(im) # Use to quantize the image itself | |
images2.append(im) | |
else: | |
# Adaptive PIL algorithm | |
AD = Image.ADAPTIVE | |
for im in images: | |
im = im.convert('P', palette=AD, dither=dither) | |
images2.append(im) | |
# Done | |
return images2 | |
def writeGifToFile(self, fp, images, durations, loops, xys, disposes): | |
""" writeGifToFile(fp, images, durations, loops, xys, disposes) | |
Given a set of images writes the bytes to the specified stream. | |
""" | |
# Obtain palette for all images and count each occurance | |
palettes, occur = [], [] | |
for im in images: | |
palettes.append( getheader(im)[1] ) | |
for palette in palettes: | |
occur.append( palettes.count( palette ) ) | |
# Select most-used palette as the global one (or first in case no max) | |
globalPalette = palettes[ occur.index(max(occur)) ] | |
# Init | |
frames = 0 | |
firstFrame = True | |
for im, palette in zip(images, palettes): | |
if firstFrame: | |
# Write header | |
# Gather info | |
header = self.getheaderAnim(im) | |
appext = self.getAppExt(loops) | |
# Write | |
fp.write(header) | |
fp.write(globalPalette) | |
fp.write(appext) | |
# Next frame is not the first | |
firstFrame = False | |
if True: | |
# Write palette and image data | |
# Gather info | |
data = getdata(im) | |
imdes, data = data[0], data[1:] | |
graphext = self.getGraphicsControlExt(durations[frames], | |
disposes[frames]) | |
# Make image descriptor suitable for using 256 local color palette | |
lid = self.getImageDescriptor(im, xys[frames]) | |
# Write local header | |
if (palette != globalPalette) or (disposes[frames] != 2): | |
# Use local color palette | |
fp.write(graphext) | |
fp.write(lid) # write suitable image descriptor | |
fp.write(palette) # write local color table | |
fp.write('\x08') # LZW minimum size code | |
else: | |
# Use global color palette | |
fp.write(graphext) | |
fp.write(imdes) # write suitable image descriptor | |
# Write image data | |
for d in data: | |
fp.write(d) | |
# Prepare for next round | |
frames = frames + 1 | |
fp.write(";") # end gif | |
return frames | |
## Exposed functions | |
def writeGif(filename, images, duration=0.1, repeat=True, dither=False, | |
nq=0, subRectangles=True, dispose=None): | |
""" writeGif(filename, images, duration=0.1, repeat=True, dither=False, | |
nq=0, subRectangles=True, dispose=None) | |
Write an animated gif from the specified images. | |
Parameters | |
---------- | |
filename : string | |
The name of the file to write the image to. | |
images : list | |
Should be a list consisting of PIL images or numpy arrays. | |
The latter should be between 0 and 255 for integer types, and | |
between 0 and 1 for float types. | |
duration : scalar or list of scalars | |
The duration for all frames, or (if a list) for each frame. | |
repeat : bool or integer | |
The amount of loops. If True, loops infinitetely. | |
dither : bool | |
Whether to apply dithering | |
nq : integer | |
If nonzero, applies the NeuQuant quantization algorithm to create | |
the color palette. This algorithm is superior, but slower than | |
the standard PIL algorithm. The value of nq is the quality | |
parameter. 1 represents the best quality. 10 is in general a | |
good tradeoff between quality and speed. When using this option, | |
better results are usually obtained when subRectangles is False. | |
subRectangles : False, True, or a list of 2-element tuples | |
Whether to use sub-rectangles. If True, the minimal rectangle that | |
is required to update each frame is automatically detected. This | |
can give significant reductions in file size, particularly if only | |
a part of the image changes. One can also give a list of x-y | |
coordinates if you want to do the cropping yourself. The default | |
is True. | |
dispose : int | |
How to dispose each frame. 1 means that each frame is to be left | |
in place. 2 means the background color should be restored after | |
each frame. 3 means the decoder should restore the previous frame. | |
If subRectangles==False, the default is 2, otherwise it is 1. | |
""" | |
# Check PIL | |
if PIL is None: | |
raise RuntimeError("Need PIL to write animated gif files.") | |
# Check images | |
images = checkImages(images) | |
# Instantiate writer object | |
gifWriter = GifWriter() | |
# Check loops | |
if repeat is False: | |
loops = 1 | |
elif repeat is True: | |
loops = 0 # zero means infinite | |
else: | |
loops = int(repeat) | |
# Check duration | |
if hasattr(duration, '__len__'): | |
if len(duration) == len(images): | |
duration = [d for d in duration] | |
else: | |
raise ValueError("len(duration) doesn't match amount of images.") | |
else: | |
duration = [duration for im in images] | |
# Check subrectangles | |
if subRectangles: | |
images, xy = gifWriter.handleSubRectangles(images, subRectangles) | |
defaultDispose = 1 # Leave image in place | |
else: | |
# Normal mode | |
xy = [(0,0) for im in images] | |
defaultDispose = 2 # Restore to background color. | |
# Check dispose | |
if dispose is None: | |
dispose = defaultDispose | |
if hasattr(dispose, '__len__'): | |
if len(dispose) != len(images): | |
raise ValueError("len(xy) doesn't match amount of images.") | |
else: | |
dispose = [dispose for im in images] | |
# Make images in a format that we can write easy | |
images = gifWriter.convertImagesToPIL(images, dither, nq) | |
# Write | |
fp = open(filename, 'wb') | |
try: | |
gifWriter.writeGifToFile(fp, images, duration, loops, xy, dispose) | |
finally: | |
fp.close() | |
def readGif(filename, asNumpy=True): | |
""" readGif(filename, asNumpy=True) | |
Read images from an animated GIF file. Returns a list of numpy | |
arrays, or, if asNumpy is false, a list if PIL images. | |
""" | |
# Check PIL | |
if PIL is None: | |
raise RuntimeError("Need PIL to read animated gif files.") | |
# Check Numpy | |
if np is None: | |
raise RuntimeError("Need Numpy to read animated gif files.") | |
# Check whether it exists | |
if not os.path.isfile(filename): | |
raise IOError('File not found: '+str(filename)) | |
# Load file using PIL | |
pilIm = PIL.Image.open(filename) | |
pilIm.seek(0) | |
# Read all images inside | |
images = [] | |
try: | |
while True: | |
# Get image as numpy array | |
tmp = pilIm.convert() # Make without palette | |
a = np.asarray(tmp) | |
if len(a.shape)==0: | |
raise MemoryError("Too little memory to convert PIL image to array") | |
# Store, and next | |
images.append(a) | |
pilIm.seek(pilIm.tell()+1) | |
except EOFError: | |
pass | |
# Convert to normal PIL images if needed | |
if not asNumpy: | |
images2 = images | |
images = [] | |
for im in images2: | |
images.append( PIL.Image.fromarray(im) ) | |
# Done | |
return images | |
class NeuQuant: | |
""" NeuQuant(image, samplefac=10, colors=256) | |
samplefac should be an integer number of 1 or higher, 1 | |
being the highest quality, but the slowest performance. | |
With avalue of 10, one tenth of all pixels are used during | |
training. This value seems a nice tradeof between speed | |
and quality. | |
colors is the amount of colors to reduce the image to. This | |
should best be a power of two. | |
See also: | |
http://members.ozemail.com.au/~dekker/NEUQUANT.HTML | |
License of the NeuQuant Neural-Net Quantization Algorithm | |
--------------------------------------------------------- | |
Copyright (c) 1994 Anthony Dekker | |
Ported to python by Marius van Voorden in 2010 | |
NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. | |
See "Kohonen neural networks for optimal colour quantization" | |
in "network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. | |
for a discussion of the algorithm. | |
See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML | |
Any party obtaining a copy of these files from the author, directly or | |
indirectly, is granted, free of charge, a full and unrestricted irrevocable, | |
world-wide, paid up, royalty-free, nonexclusive right and license to deal | |
in this software and documentation files (the "Software"), including without | |
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
and/or sell copies of the Software, and to permit persons who receive | |
copies from any such party to do so, with the only requirement being | |
that this copyright notice remain intact. | |
""" | |
NCYCLES = None # Number of learning cycles | |
NETSIZE = None # Number of colours used | |
SPECIALS = None # Number of reserved colours used | |
BGCOLOR = None # Reserved background colour | |
CUTNETSIZE = None | |
MAXNETPOS = None | |
INITRAD = None # For 256 colours, radius starts at 32 | |
RADIUSBIASSHIFT = None | |
RADIUSBIAS = None | |
INITBIASRADIUS = None | |
RADIUSDEC = None # Factor of 1/30 each cycle | |
ALPHABIASSHIFT = None | |
INITALPHA = None # biased by 10 bits | |
GAMMA = None | |
BETA = None | |
BETAGAMMA = None | |
network = None # The network itself | |
colormap = None # The network itself | |
netindex = None # For network lookup - really 256 | |
bias = None # Bias and freq arrays for learning | |
freq = None | |
pimage = None | |
# Four primes near 500 - assume no image has a length so large | |
# that it is divisible by all four primes | |
PRIME1 = 499 | |
PRIME2 = 491 | |
PRIME3 = 487 | |
PRIME4 = 503 | |
MAXPRIME = PRIME4 | |
pixels = None | |
samplefac = None | |
a_s = None | |
def setconstants(self, samplefac, colors): | |
self.NCYCLES = 100 # Number of learning cycles | |
self.NETSIZE = colors # Number of colours used | |
self.SPECIALS = 3 # Number of reserved colours used | |
self.BGCOLOR = self.SPECIALS-1 # Reserved background colour | |
self.CUTNETSIZE = self.NETSIZE - self.SPECIALS | |
self.MAXNETPOS = self.NETSIZE - 1 | |
self.INITRAD = self.NETSIZE/8 # For 256 colours, radius starts at 32 | |
self.RADIUSBIASSHIFT = 6 | |
self.RADIUSBIAS = 1 << self.RADIUSBIASSHIFT | |
self.INITBIASRADIUS = self.INITRAD * self.RADIUSBIAS | |
self.RADIUSDEC = 30 # Factor of 1/30 each cycle | |
self.ALPHABIASSHIFT = 10 # Alpha starts at 1 | |
self.INITALPHA = 1 << self.ALPHABIASSHIFT # biased by 10 bits | |
self.GAMMA = 1024.0 | |
self.BETA = 1.0/1024.0 | |
self.BETAGAMMA = self.BETA * self.GAMMA | |
self.network = np.empty((self.NETSIZE, 3), dtype='float64') # The network itself | |
self.colormap = np.empty((self.NETSIZE, 4), dtype='int32') # The network itself | |
self.netindex = np.empty(256, dtype='int32') # For network lookup - really 256 | |
self.bias = np.empty(self.NETSIZE, dtype='float64') # Bias and freq arrays for learning | |
self.freq = np.empty(self.NETSIZE, dtype='float64') | |
self.pixels = None | |
self.samplefac = samplefac | |
self.a_s = {} | |
def __init__(self, image, samplefac=10, colors=256): | |
# Check Numpy | |
if np is None: | |
raise RuntimeError("Need Numpy for the NeuQuant algorithm.") | |
# Check image | |
if image.size[0] * image.size[1] < NeuQuant.MAXPRIME: | |
raise IOError("Image is too small") | |
if image.mode != "RGBA": | |
raise IOError("Image mode should be RGBA.") | |
# Initialize | |
self.setconstants(samplefac, colors) | |
self.pixels = np.fromstring(image.tostring(), np.uint32) | |
self.setUpArrays() | |
self.learn() | |
self.fix() | |
self.inxbuild() | |
def writeColourMap(self, rgb, outstream): | |
for i in range(self.NETSIZE): | |
bb = self.colormap[i,0]; | |
gg = self.colormap[i,1]; | |
rr = self.colormap[i,2]; | |
outstream.write(rr if rgb else bb) | |
outstream.write(gg) | |
outstream.write(bb if rgb else rr) | |
return self.NETSIZE | |
def setUpArrays(self): | |
self.network[0,0] = 0.0 # Black | |
self.network[0,1] = 0.0 | |
self.network[0,2] = 0.0 | |
self.network[1,0] = 255.0 # White | |
self.network[1,1] = 255.0 | |
self.network[1,2] = 255.0 | |
# RESERVED self.BGCOLOR # Background | |
for i in range(self.SPECIALS): | |
self.freq[i] = 1.0 / self.NETSIZE | |
self.bias[i] = 0.0 | |
for i in range(self.SPECIALS, self.NETSIZE): | |
p = self.network[i] | |
p[:] = (255.0 * (i-self.SPECIALS)) / self.CUTNETSIZE | |
self.freq[i] = 1.0 / self.NETSIZE | |
self.bias[i] = 0.0 | |
# Omitted: setPixels | |
def altersingle(self, alpha, i, b, g, r): | |
"""Move neuron i towards biased (b,g,r) by factor alpha""" | |
n = self.network[i] # Alter hit neuron | |
n[0] -= (alpha*(n[0] - b)) | |
n[1] -= (alpha*(n[1] - g)) | |
n[2] -= (alpha*(n[2] - r)) | |
def geta(self, alpha, rad): | |
try: | |
return self.a_s[(alpha, rad)] | |
except KeyError: | |
length = rad*2-1 | |
mid = length/2 | |
q = np.array(list(range(mid-1,-1,-1))+list(range(-1,mid))) | |
a = alpha*(rad*rad - q*q)/(rad*rad) | |
a[mid] = 0 | |
self.a_s[(alpha, rad)] = a | |
return a | |
def alterneigh(self, alpha, rad, i, b, g, r): | |
if i-rad >= self.SPECIALS-1: | |
lo = i-rad | |
start = 0 | |
else: | |
lo = self.SPECIALS-1 | |
start = (self.SPECIALS-1 - (i-rad)) | |
if i+rad <= self.NETSIZE: | |
hi = i+rad | |
end = rad*2-1 | |
else: | |
hi = self.NETSIZE | |
end = (self.NETSIZE - (i+rad)) | |
a = self.geta(alpha, rad)[start:end] | |
p = self.network[lo+1:hi] | |
p -= np.transpose(np.transpose(p - np.array([b, g, r])) * a) | |
#def contest(self, b, g, r): | |
# """ Search for biased BGR values | |
# Finds closest neuron (min dist) and updates self.freq | |
# finds best neuron (min dist-self.bias) and returns position | |
# for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative | |
# self.bias[i] = self.GAMMA*((1/self.NETSIZE)-self.freq[i])""" | |
# | |
# i, j = self.SPECIALS, self.NETSIZE | |
# dists = abs(self.network[i:j] - np.array([b,g,r])).sum(1) | |
# bestpos = i + np.argmin(dists) | |
# biasdists = dists - self.bias[i:j] | |
# bestbiaspos = i + np.argmin(biasdists) | |
# self.freq[i:j] -= self.BETA * self.freq[i:j] | |
# self.bias[i:j] += self.BETAGAMMA * self.freq[i:j] | |
# self.freq[bestpos] += self.BETA | |
# self.bias[bestpos] -= self.BETAGAMMA | |
# return bestbiaspos | |
def contest(self, b, g, r): | |
""" Search for biased BGR values | |
Finds closest neuron (min dist) and updates self.freq | |
finds best neuron (min dist-self.bias) and returns position | |
for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative | |
self.bias[i] = self.GAMMA*((1/self.NETSIZE)-self.freq[i])""" | |
i, j = self.SPECIALS, self.NETSIZE | |
dists = abs(self.network[i:j] - np.array([b,g,r])).sum(1) | |
bestpos = i + np.argmin(dists) | |
biasdists = dists - self.bias[i:j] | |
bestbiaspos = i + np.argmin(biasdists) | |
self.freq[i:j] *= (1-self.BETA) | |
self.bias[i:j] += self.BETAGAMMA * self.freq[i:j] | |
self.freq[bestpos] += self.BETA | |
self.bias[bestpos] -= self.BETAGAMMA | |
return bestbiaspos | |
def specialFind(self, b, g, r): | |
for i in range(self.SPECIALS): | |
n = self.network[i] | |
if n[0] == b and n[1] == g and n[2] == r: | |
return i | |
return -1 | |
def learn(self): | |
biasRadius = self.INITBIASRADIUS | |
alphadec = 30 + ((self.samplefac-1)/3) | |
lengthcount = self.pixels.size | |
samplepixels = lengthcount / self.samplefac | |
delta = samplepixels / self.NCYCLES | |
alpha = self.INITALPHA | |
i = 0; | |
rad = biasRadius >> self.RADIUSBIASSHIFT | |
if rad <= 1: | |
rad = 0 | |
print("Beginning 1D learning: samplepixels = %1.2f rad = %i" % | |
(samplepixels, rad) ) | |
step = 0 | |
pos = 0 | |
if lengthcount%NeuQuant.PRIME1 != 0: | |
step = NeuQuant.PRIME1 | |
elif lengthcount%NeuQuant.PRIME2 != 0: | |
step = NeuQuant.PRIME2 | |
elif lengthcount%NeuQuant.PRIME3 != 0: | |
step = NeuQuant.PRIME3 | |
else: | |
step = NeuQuant.PRIME4 | |
i = 0 | |
printed_string = '' | |
while i < samplepixels: | |
if i%100 == 99: | |
tmp = '\b'*len(printed_string) | |
printed_string = str((i+1)*100/samplepixels)+"%\n" | |
print(tmp + printed_string) | |
p = self.pixels[pos] | |
r = (p >> 16) & 0xff | |
g = (p >> 8) & 0xff | |
b = (p ) & 0xff | |
if i == 0: # Remember background colour | |
self.network[self.BGCOLOR] = [b, g, r] | |
j = self.specialFind(b, g, r) | |
if j < 0: | |
j = self.contest(b, g, r) | |
if j >= self.SPECIALS: # Don't learn for specials | |
a = (1.0 * alpha) / self.INITALPHA | |
self.altersingle(a, j, b, g, r) | |
if rad > 0: | |
self.alterneigh(a, rad, j, b, g, r) | |
pos = (pos+step)%lengthcount | |
i += 1 | |
if i%delta == 0: | |
alpha -= alpha / alphadec | |
biasRadius -= biasRadius / self.RADIUSDEC | |
rad = biasRadius >> self.RADIUSBIASSHIFT | |
if rad <= 1: | |
rad = 0 | |
finalAlpha = (1.0*alpha)/self.INITALPHA | |
print("Finished 1D learning: final alpha = %1.2f!" % finalAlpha) | |
def fix(self): | |
for i in range(self.NETSIZE): | |
for j in range(3): | |
x = int(0.5 + self.network[i,j]) | |
x = max(0, x) | |
x = min(255, x) | |
self.colormap[i,j] = x | |
self.colormap[i,3] = i | |
def inxbuild(self): | |
previouscol = 0 | |
startpos = 0 | |
for i in range(self.NETSIZE): | |
p = self.colormap[i] | |
q = None | |
smallpos = i | |
smallval = p[1] # Index on g | |
# Find smallest in i..self.NETSIZE-1 | |
for j in range(i+1, self.NETSIZE): | |
q = self.colormap[j] | |
if q[1] < smallval: # Index on g | |
smallpos = j | |
smallval = q[1] # Index on g | |
q = self.colormap[smallpos] | |
# Swap p (i) and q (smallpos) entries | |
if i != smallpos: | |
p[:],q[:] = q, p.copy() | |
# smallval entry is now in position i | |
if smallval != previouscol: | |
self.netindex[previouscol] = (startpos+i) >> 1 | |
for j in range(previouscol+1, smallval): | |
self.netindex[j] = i | |
previouscol = smallval | |
startpos = i | |
self.netindex[previouscol] = (startpos+self.MAXNETPOS) >> 1 | |
for j in range(previouscol+1, 256): # Really 256 | |
self.netindex[j] = self.MAXNETPOS | |
def paletteImage(self): | |
""" PIL weird interface for making a paletted image: create an image which | |
already has the palette, and use that in Image.quantize. This function | |
returns this palette image. """ | |
if self.pimage is None: | |
palette = [] | |
for i in range(self.NETSIZE): | |
palette.extend(self.colormap[i][:3]) | |
palette.extend([0]*(256-self.NETSIZE)*3) | |
# a palette image to use for quant | |
self.pimage = Image.new("P", (1, 1), 0) | |
self.pimage.putpalette(palette) | |
return self.pimage | |
def quantize(self, image): | |
""" Use a kdtree to quickly find the closest palette colors for the pixels """ | |
if get_cKDTree(): | |
return self.quantize_with_scipy(image) | |
else: | |
print('Scipy not available, falling back to slower version.') | |
return self.quantize_without_scipy(image) | |
def quantize_with_scipy(self, image): | |
w,h = image.size | |
px = np.asarray(image).copy() | |
px2 = px[:,:,:3].reshape((w*h,3)) | |
cKDTree = get_cKDTree() | |
kdtree = cKDTree(self.colormap[:,:3],leafsize=10) | |
result = kdtree.query(px2) | |
colorindex = result[1] | |
print("Distance: %1.2f" % (result[0].sum()/(w*h)) ) | |
px2[:] = self.colormap[colorindex,:3] | |
return Image.fromarray(px).convert("RGB").quantize(palette=self.paletteImage()) | |
def quantize_without_scipy(self, image): | |
"""" This function can be used if no scipy is availabe. | |
It's 7 times slower though. | |
""" | |
w,h = image.size | |
px = np.asarray(image).copy() | |
memo = {} | |
for j in range(w): | |
for i in range(h): | |
key = (px[i,j,0],px[i,j,1],px[i,j,2]) | |
try: | |
val = memo[key] | |
except KeyError: | |
val = self.convert(*key) | |
memo[key] = val | |
px[i,j,0],px[i,j,1],px[i,j,2] = val | |
return Image.fromarray(px).convert("RGB").quantize(palette=self.paletteImage()) | |
def convert(self, *color): | |
i = self.inxsearch(*color) | |
return self.colormap[i,:3] | |
def inxsearch(self, r, g, b): | |
"""Search for BGR values 0..255 and return colour index""" | |
dists = (self.colormap[:,:3] - np.array([r,g,b])) | |
a= np.argmin((dists*dists).sum(1)) | |
return a | |
if __name__ == '__main__': | |
im = np.zeros((200,200), dtype=np.uint8) | |
im[10:30,:] = 100 | |
im[:,80:120] = 255 | |
im[-50:-40,:] = 50 | |
images = [im*1.0, im*0.8, im*0.6, im*0.4, im*0] | |
writeGif('lala3.gif',images, duration=0.5, dither=0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from PIL import Image | |
np.set_printoptions(linewidth = 180, edgeitems=10, suppress = True) | |
def digital_reverse(n, length, base): | |
r = 0 | |
for _ in range(length): | |
r = base*r + n % base | |
n /= base | |
return r | |
assert digital_reverse(123, 3, 10) == 321 | |
assert digital_reverse(54321, 5, 10) == 12345 | |
assert digital_reverse(0x123, 3, 16) == 0x321 | |
assert digital_reverse(0x54321, 5, 16) == 0x12345 | |
color = [[lambda g: (g, 0, 0), lambda g: (0, g, 0)], [lambda g: (0, 0, g), lambda g: (g, g, 0)]] | |
def get_image(m): | |
image = Image.new("RGB", (m.shape[1], m.shape[0]), 0) | |
pix = image.load() | |
for y in xrange(m.shape[0]): | |
for x in xrange(m.shape[1]): | |
#pix[x, y] = 255*m[y, x]/(modulo-1) | |
pix[x, y] = color[x&1][y&1](m[y, x]) | |
return image | |
if __name__ == '__main__': | |
import pylab as P | |
# Image size | |
base = 2 | |
power = 6 | |
size = base**power | |
print "base", base | |
print "power", power | |
print "size", size | |
# known state after applying rule 15 | |
reversible_state = np.zeros((size, size), np.int8) | |
for i in xrange(size): | |
ri = digital_reverse(i, power, base) | |
reversible_state[i, ri] = 1 | |
#reversible_state = np.ones((size, size), np.int8) | |
# partially known state | |
state = np.zeros((size, size), np.int16) | |
# fill initial (known) values | |
state[:, 0] = np.arange(size) | |
state[0, :] = np.arange(size) | |
# find rest values of the state | |
for i0 in xrange(size-1): | |
i1 = i0 + 1 | |
for j0 in xrange(size-1): | |
j1 = j0 + 1 | |
# reverse rule 15-0 | |
state[i1, j1] = -state[i0, j0] - state[i0, j1] - state[i1, j0] + reversible_state[i0, j0] | |
mn = np.min(state) | |
mx = np.max(state) | |
print "min cell", mn | |
print "max cell", mx | |
pic = np.zeros((size, size), np.int16) | |
images = [None] * (mx-mn+1) | |
for value in range(mn, mx+1): | |
print "slide", value-mn, 'of', mx-mn | |
pic -= 20 # hiding tail | |
pic[pic<0] = 0 | |
pic[state == value] = 255 | |
images[value-mn] = get_image(pic) | |
from images2gif import writeGif | |
writeGif("reverse_rule15_0_sliding_color.gif", images, duration=0.05, dither=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment