Created
June 6, 2025 08:16
-
-
Save xamidi/daa0ec784e2a82904edefe319cdbf165 to your computer and use it in GitHub Desktop.
Proof summary of https://us.metamath.org/mmsolitaire/pmproofs.txt (version 26-Feb-2025) for use with https://github.com/xamidi/pmGenerator.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Full summary: pmGenerator --transform data/pm.txt -f -n -t . -j 1 | |
% - infix formulas: pmGenerator --transform data/pm.txt -f -n -t . -j 1 -u | |
% - to file: pmGenerator --transform data/pm.txt -f -n -t . -j 1 -u -o data/tmp.txt | |
% Same steps: | |
% - step counting: pmGenerator --transform data/pm.txt -f -n -t . -j -1 -p -2 -d | |
% - infix formulas: pmGenerator --transform data/pm.txt -f -n -t . -j -1 -u | |
% Summary containing intermediate theorems with use counts of at least two: | |
% - to file: pmGenerator --transform data/pm.txt -f -n -t . -o data/tmp.txt -d | |
% (14702 bytes, in contrast to 14059 bytes here) | |
% List of theorems: CCNppp,CCNpqCNqp,CCpCqrCqCpr,CCpqCCrpCrq,CCpNpNp,CCpNqCqNp,CCpqCCqrCpr,Cpp,CNNpp,CpNNp,CCpqCNqNp,CpCNpq,CNpCpq,CpCCpqq,CNNpCCpqq,CCpCNqrCpCNrq,CCpCNqrCNCpqr,CCNCpqrCpCNqr,CCpqCCNrpCNqr,CCpqCCNprCNrq,CCpqCCNprCNqr,CCpCpqCpq,CCNpCqpCqp,CCNNpCpqCpq,CNCpqp,CNCpqNq,CNCpqCNpr,CNCpqCrNq,CNCpqCqr,CNpCCNqpq,CCNpqCCpqq,CCpqCCNpqq,CCNpqCCNpNqp,CCpqCCpNqNp,CCCNpqrCpr,CCCpqrCNpr,CCCpqrCCrpp,CCpqCCNCNpqrCNqr,CCpqCCNCNqprCNqr,CCpqCCpCqrCpr,CCpqCCNNqrCpr,CCpCqrCCspCCsqCsr,CCNCpqrCCNCpNrsCNCpqs,CCpCqrCCpCrsCpCqs,CCCpqCrsCrCqs,CNCpqNCNNpq,CNCNNpqNCpq,CNNCpqCNNpq,CCNNpqNNCpq,CpCqNCpNq,CpCqNCqNp,CNCpNqNCqNp,NNCpNNp,CNCpNqq,CCNCpNqrCpCqr,CCpCqrCNCpNqr,CNCCpqNCqrCpr,CNCCpqNCrpCrq,CNCpNCpqq,CCNCpNqrCNCpNNrNq,CNCpNqCrq,CCpqCNCprq,CCpqCNCrNpq,CNCCpqNCprCpNCqNr,CNCCpqNCrqCCNprq,CCpqCNCprNCqr,CNCCpqNCrsCNCpNrNCqNs,CNCCpqNCrsCCNprCNqs,NCCCpqCNqNpNCCNrNsCsr,NCCNCCpqNCrsNCCNsNrNCNqNpNCNCCNtNuNCNvNwNCCwvNCut,NCCNCCpNqNCNrsNCCqNpNCNsrNCNCCtNuNCNvwNCCuNtNCNwv,NCCpNNpNCNNqq,NCCCNCpNqrCNCpNNrNqNCCNCsNNtuCNCsut,NCCCNCpNqrCNCqrNpNCCNCstNuCNCuNst,NCCppNCqq,NCCNCpNqNCqNpNCNCrNsNCsNr,CNCNCCpqNCrsNNCCqtNCurNCCptNCus,NCCpNCpNpNCNCqNrr,NCCpCqpNCCNrrr,NCCCNpqCNqpNCCNrsCNsr,NCCNCNCpNqrNCpNNCqrNCNCsNNCtuNCNCsNtu,NCCCNCpqrCpCNqrNCCsCNtuCNCstu,CNCCpqNCrsNCCNCptNCqtNCNCruNCsu,CNCCpqNCrsNCCCNptCNqtNCCNruCNsu,CNCNCCpqNCrsNNCCtuNCvwNCCNCpNtNCqNuNCNCrNvNCsNw,CNCNCCpqNCrsNNCCtuNCvwNCCCNptCNquNCCNrvCNsw,NCCNCpNCqrCNNCpqNCpNrNCCNNCstNCsNuNCsNCtu,NCCCpNCqNrNCCpqNCprNCNCCstNCsuCsNCtNu,NCCpCNNCpqNCpNqNCCNNCrsNCrtr,NCCpNCCNpqNCNprNCNCCNstNCNsNts,NCCpCNpqNCCNrNCrsr,NCCpNCpNCNpqNCNCrsr,NCCNCpqNCNNpqNCNCNNrsNCrs,NCCNNCpqCNNpqNCCNNrsNNCrs,NCCNCpNNqNCNNpqNCNCNNrsNCrNNs,NCCNNCpNNqCNNpqNCCNNrsNNCrNNs,NCCNNppNCqNNq,NCCNCpNNqNCpqNCNCrsNCrNNs,NCCNNCpNNqCpqNCCrsNNCrNNs,NCCCpqCNNpqNCCNNrsCrs,NCCNCpqNCpNNqNCNCrNNsNCrs,NCCCpqCpNCpNqNCCrNCsNtCrt,NCCCpqNCCpNCpNqNCNCrsrNCNCCtNCuNvwCtv,NCCCpqNCCrCsrNCCNpqqNCNCtNCCNuvwCuw,CpNCCqNCqNpNCNCrsr,CpNCCqCrqNCCpss,NCCNCCpqNCprCpNCqNrNCCsNCtNuNCCstNCsu,NCCNCCpqNCrqCCNprqNCCCNstuNCCsuNCtu,NCCCNCpqCprCpCNqrNCCsCNtuCNCvtCsu,NCCCNCpqCrqCNCpNrqNCCNCsNtuCNCsvCtu,NCCCpNpNpNCqCrq,NCCCNpppNCqCrq,NCCNCCpqNCpNqNpNCNrNCCrsNCrt,NCCNCCpqNCNpqqNCrNCCsrNCtr,CNCCpqNCrsNCCCstCrtNCCquCpu,CNCCpqNCrsNCCCtpCtqNCCurCus,CNCCpqNCrsNCCNCCstNCupNCCrtNCuqNCNCCqvNCwrNCCpvNCws,NCNCNCCCNCpNqrCpCqrNCCsCtuCNCsNtuNNCCCvCwxCwCvxNCCyCzaCzCyaNNCCCbCcdCNCbNcdNCCNCeNfgCeCfg,CNCpNqNCCrqNCsp,CNNCCpqNCrsNCCsNqNCNrp,NNCNCCpqNCqpNNCCpNqNCNqp,NCCNCCNpqNNNrNCrNCNqpNCNCsNCNtuNCCNutNNNs,NCCNCCpqNCqpNNCCpNqNCNqpNCNNCCrNsNCNtuNCCusNCtr,NNCCpNpNCNpp,CNCNpNNqNCCprNCqs,NCCNNCCpqNCrsCNNCpNNqNCrNNsNCCNNCtNNuNCvNNwNNCCtuNCvw,NCCNCCpqNCqpCNNCpNqNCNpNNqNCCNNCrNsNCNtNNuNCCtsNCur,NCCNCNNCpNqNCNpNNqCNNCpNNqNCqNNpNCCNNCrNsNCtNNuNCNNCusNCNrNNt,NCCCNpqCCpqqNCCCrstCNrt,NCCCNCpqrCNCpqNCpNrNCCsNCtNuCsu,CNCpNCqrCqNCrNp,NCCCpNCCqrNCstNCCNCpNqNCpNrNCNCpNsNCpNtNCNCCNCuNvNCwNxNCNCuNyNCzNaCuNCCvxNCya,NCCNCpNCqrNCpNCNCsNqrNCNCtNCNCtNuvNCtNCuv,CNCCpqNCprCpNCCsrNCtq,NCCNCpNNCCpqrNCqNNCCpqrNCNCsNNCtNCsuNCuNNCtNCsu,NCCCpCpqCpqNCrCsr,NCCCCpqCrsCrCqsNCCtCuvCCtuCtv,NCCCpCqrCpCqNCpNrNCCsCtNCuNvCsCtv,CCpqNCCCprCpNCqNrNCCsNCtNuCsu,CpNCCCpqqNCrCsr,CpNCCqNCCrqNCspNCNCCptut,NCCCCNCNpqrsNCNCCpsNCqsNCrsNCNCNCCtuNCvuNCwuCCNCNtvwu,CNNCCpqNCrNCrNsNCCNCtNuuNCsp,CNNCCCNpqpNCrCNrsNCCtqNCuCvu,NCCCNCpNqrCpCqrNCCsCtuCNCsNtu,NCCNCCNpqNNqNCpNNqNCNCrsNCCNrts,NCCCNNCpqrCNprNCCNstCNNCstt,NCCNCCCNpqCNrsNCCNtuCNvsCNsNCCprNCtvNCCNwNCCxyNCzaNCCCNxwCNywNCCNzwCNaw,CCpNqNCCNCCNrpNqNCrNqNCNCstNCCNsut,NCCCpNCCqrNCstNCCCpqCprNCCpsCptNCNCCCuvCwxNCCyzCwaCwNCCvxNCza,CNCCpqNNCCrCstNCCupvNCCNCrNstNCpNCvNq,CCCCCpqCNrNsrtCCtpCsp,CCCpqpp,NCCNCCNCCpqNCrstNCuNCCsvNCrpNCCsNCCqtNCuvNCNCCruNCtrpNCNCCwNCCxyNCzaNCNCCxzNCybcNCCNCCcxNCxwyNCzNCCwaNCbc | |
% - generated from 'data/pmproofs.txt' (https://us.metamath.org/mmsolitaire/pmproofs.txt, version 26-Feb-2025) via | |
% $ ./dProofsFromDB data/pmproofs.txt data/pmproofs_dproofs.txt 1 1 | |
% $ ./pmGenerator --parse data/pmproofs_dProofs.txt -f -n -b -o data/tmp.txt | |
% $ sed -i 's/[0-9]+\. //g' -r data/tmp.txt && tr '\n' ',' < data/tmp.txt > data/pmproofs_theorems.txt && sed -i 's/,$//g' -r data/pmproofs_theorems.txt | |
% File generated from 'data/pmproofs.txt' via | |
% $ ./dProofsFromDB data/pmproofs.txt data/pmproofs_dproofs.txt 1 1 | |
% $ ./pmGenerator --parse data/pmproofs_dProofs.txt -f -n -s -o data/tmp.txt | |
% $ ./pmGenerator --transform data/tmp.txt -f -n -j -1 -o data/pm.txt -t <list of theorems> | |
% Compacting list: CCpCqCrsCpCCqrCqs,CCpCNqNrCpCrq,CNNpCqp,CCpCqCCrqsCpCqs,CCpqCpCrq,CCpCNqCCqrsCpCNqs,CCpCqrCpCCrsCqs,CNpCqCpr,CCpqCpNNq,CCNNCpqpCNNCpqq,CCpCNNCqrqCpCNNCqrr,CCpCNNqCqrCpCNNqr,CpCNCqNrr,CCNNpqCpq,CCpCqCNrrCpCqr,CCpCCNqrsCpCCNrqs,CCCpqCrCspCCpqCrCsq,CCpqCpCrNCqNr,CCNNCpqCrpCNNCpqCrq,CCpqCNNCqrCpr,CNCpNCqrCCsqCsr,CNCpqCrp,CNCCpqrCCspCsq,CpCNqNCpq,CNNCCpqNCrsCsNq,CCpCqrCpCCqsCqNCrNs,CCpCqNNrCpCqr,CpCqNCCrqNCsp,CNNCpNqCqNNNp,CCpqCpNNNNq,CNCpNNqNCpq,CNCpNNCqrq,CNCpNNCqNrr,CNCNCpqrp,CNCNCpNqrCsq,CNCCpqNCqpNNCCpNqNCNqp | |
% - generated from 'data/pm.txt' via | |
% $ ./findCompactSummary data/pm.txt <list of theorems> | |
% - usage: | |
% $ ./pmGenerator --transform data/pm.txt -f -n -j -1 -o data/pm-compact.txt -t <list of theorems> -s <compacting list> -d | |
% - examplary output: 24.43 ms taken to obtain 1039 helper proof candidates, i.e. the minimal set of referenced proofs such that each proof contains only a single rule with inputs. | |
% 76.86 ms taken to morph and parse 1194 abstract proofs. | |
% 0.32 ms taken to validate 155 conclusions. | |
% 4.99 ms taken to find 155 occurrences of 154 theorems. | |
% 0.36 ms taken to obtain 1194 referenced indices. | |
% 2.14 ms taken to obtain 191 dedicated indices. | |
% 0.92 ms taken to build transformed proof. | |
% 2.12 ms taken to print and save 11850 bytes to data/pm-compact.txt. | |
% NOTE: There are two proofs for CCpqCNCrNpq at [34] and [36] — only [36] is referenced by other proofs. | |
CpCqp = 1 | |
CCpCqrCCpqCpr = 2 | |
CCNpNqCqp = 3 | |
[0] Cpp = DD211 | |
[1] CCpCpqCpq = DD22D21 | |
[2] CCpqCCrpCrq = DD2D121 | |
[3] CNpCpq = DD2D131 | |
[4] CCpqCCpCqrCpr = DD2D1D221 | |
[5] CpCCpqq = DD2D1D2[0]1 | |
[6] CCpqCCqrCpr = DD2D1D2[2]1 | |
[7] CpCNpq = DD2D1D2[3]1 | |
[8] CCpCqrCCspCCsqCsr = DD2D1D2D12[2] | |
[9] CNNpp = DD2DD2D13[3]1 | |
[10] CpNNp = D3[9] | |
[11] CCpCqrCqCpr = DD2D1DD22D11DD2D112 | |
[12] CCCpqrCNpr = DD2D1DD22D1[3]1 | |
[13] CCNppp = DD2DD2D13D2[3]1 | |
[14] CCpCqrCCpCrsCpCqs = DD2D12D2D1[6] | |
[15] CNNpCCpqq = DD2D1D2[0]DD2D13[3] | |
[16] CNCpqCqr = DD2D1DD22D11DD2D11[3] | |
[17] CNCpNqq = D3DD2D1[10]1 | |
[18] CCCNpqrCpr = DD2D1DD22D1[7]1 | |
[19] CCNpqCNqp = DD2D13D2D1[10] | |
[20] CpCqNCpNq = DD2D13DD2D1D2[9]1 | |
[21] CNCpNqCrq = DD2D13[16] | |
[22] CCpNqCqNp = DD2D13DD2D1DD22D2DD2D13[3]1 | |
[23] CNCpqCNpr = DD2D1DD22D1[3]DD2D11[3] | |
[24] CCpCNqrCpCNrq = D2D1[19] | |
[25] CNCpqp = D3DD2D1[10][3] | |
[26] NCCCpCpqCpqNCrCsr = DD3DD2[9]D1[1]1 | |
[27] CNpCCNqpq = DD2D1D2D1DD23D11DD2D12DD2D11[3] | |
[28] NCCppNCqq = DD3DD2[9]D1[0][0] | |
[29] CCCpqCrsCrCqs = DD2D1DD22D11DD2D11DD2D12DD2D1DD22D111 | |
[30] CNNCpqCNNpq = DD2D1DD22D2DD2D13[3]DD2D13[3] | |
[31] CNCpqNq = D3DD2D1[10]DD2D13[3] | |
[32] CCNpqCCNpNqp = DD2D13D2[20] | |
[33] CpCqNCqNp = DD2D1D2[20]1 | |
[34] CCpqCNCrNpq = DD2[2]D1[17] | |
[35] NNCpNNp = D[10][10] | |
[36] CCpqCNCrNpq = DD2D1DD22D1[17]1 | |
[37] CpNCCqCrqNCCpss = DD2D1D3DD2[9]D11[5] | |
[38] CCNNpCpqCpq = DD2D1[1]DD2D1DD22D1[10]1 | |
[39] CNCpqCrNq = DD2D1DD2D13DD2D1DD22D1DD2D13[3]1[3] | |
[40] CCpqCCNNqrCpr = DD2D1[6]D2D1[10] | |
[41] CCCpqpp = DD2D1[13][12] | |
[42] CCpqCCNrpCNqr = DD2D1[24][2] | |
[43] CCpqCNCprq = DD2[2]D1[25] | |
[44] NCCpCqpNCCNrrr = DD3DD2[9]D11[13] | |
[45] NCCCNpppNCqCrq = DD3DD2[9]D1[13]1 | |
[46] CCNpCqpCqp = DD2D1D2D1[13][11] | |
[47] CCpNpNp = DD2D1[13]DD2D1DD22D2DD2D13[3]1 | |
[48] CCpqCCNprCNrq = DD2D1DD2[2]D1[19][2] | |
[49] CCNNpqNNCpq = DD2D1[10]DD2D1DD22D1[10]1 | |
[50] CCNCpNqrCpCqr = DD2DD2D12DD2D11[2]D1[20] | |
[51] CpNCCCpqqNCrCsr = DD2DD2D1[20][5]D11 | |
[52] CCpqCNqNp = DD2D1[22]D2D1[10] | |
[53] CCpqCNCprNCqr = D[24]DD2D1D2DD2D12DD2D13[3]1 | |
[54] NCCpNNpNCNNqq = DD3DD2[9]D1[10][9] | |
[55] NCCNNppNCqNNq = DD3DD2[9]D1[9][10] | |
[56] CNCNNpqNCpq = D3DD2D1[10][30] | |
[57] CNCpNCpqq = DD2[17][25] | |
[58] NCCCCpqCrsCrCqsNCCtCuvCCtuCtv = DD3DD2[9]D1[29]2 | |
[59] CCCpqrCCrpp = DD2D1DD2D1D2D1[13][6][12] | |
[60] CNCpNqNCqNp = D3DD2D1[10]DD2D13[30] | |
[61] CNCpqNCNNpq = D3DD2D1[10]DD2DD2D12DD2D13[3]D1[10] | |
[62] CCpqCCpNqNp = DD2D1[22]D2[20] | |
[63] CNCCpqNCqrCpr = DD2DD2D12[21][25] | |
[64] CNCCpqNCrpCrq = DD2DD2D12DD2D13[23][17] | |
[65] NCCCpNpNpNCqCrq = DD3DD2[9]D1[47]1 | |
[66] CCNpqCCpqq = DD2D1DD2D1DD2D1D2D1[13][6]3D2D1[10] | |
[67] CCpqCCNprCNqr = DD2D1[6][52] | |
[68] NCCpCNpqNCCNrNCrsr = DD3DD2[9]D1[7]DD2DD2D13D2DD2D1D2[3]DD2D11[3]3 | |
[69] CCpqCCNpqq = DD2D1D2D1[13][48] | |
[70] NCCCpqCNNpqNCCNNrsCrs = DD3DD2[9]D1DD2D1DD22D2DD2D13[3]1DD2D1DD22D1[10]1 | |
[71] CCNCpqrCpCNqr = DD2DD2D12DD2D11[2]D1DD2D13DD2D1D2D1[10]DD2D1D2[9]1 | |
[72] CCpCqrCNCpNqr = DD2DD2D12[43]D1[17] | |
[73] NCCCNpqCNqpNCCNrsCNsr = DD3DD2[9]D1[19][19] | |
[74] NCCCpqCNqNpNCCNrNsCsr = DD3DD2[9]D1[52]3 | |
[75] CNCpNqNCCrqNCsp = D3DD2D1[10]DD2D1DD2D1DD22D111DD2D13DD2D1DD22D1DD2D13[3]DD2D13[3] | |
[76] CCNCpqrCCNCpNrsCNCpqs = DD2D1[6]D2DD2D13DD2D1D2[9]DD2D13[23] | |
[77] NCCCpqCpNCpNqNCCrNCsNtCrt = DD3DD2[9]D1D2[20]D2D1[17] | |
[78] NCCpNCpNpNCNCqNrr = DD3DD2[9]D1DD2DD2D1D231DD2D1D2[9]1[17] | |
[79] CCpCNqrCNCpqr = D[24]DD2D1[11][24] | |
[80] CNCpNCqrCqNCrNp = DD2D1D2DD2D13DD2D1D2D1DD2D1[10]3DD2D1DD2D1D2DD2D12DD2D13[3]1DD2D1D2[9]11 | |
[81] NNCCpNpNCNpp = D[10]D3DDD22D2DD2D13[3]D1DD2D1DD2DD2D1D231DD2D1D2[9]1[13] | |
[82] NCCCpCqrCpCqNCpNrNCCsCtNCuNvCsCtv = DD3DD2[9]D1D2DD2D1[2][20]D2D1D2D1[17] | |
[83] NCCpNCpNCNpqNCNCrsr = DD3DD2[9]D1DD2[20][7][25] | |
[84] CNCCpqNCprCpNCqNr = DD2DD2D1DD2D12D2D1[20][25][17] | |
[85] CNCNpNNqNCCprNCqs = D3DD2D1[10]DD2D1D2D1D3DD2D1[10]DD2D13DD2D13[3]DD2D1DD22D1[3]DD2D13[3] | |
[86] CCpqNCCCprCpNCqNrNCCsNCtNuCsu = DD2DD2D1[20]DD2D12D2D1[20]D1D2D1[17] | |
[87] CpNCCqNCqNpNCNCrsr = DD2DD2D1[20][33]D1[25] | |
[88] NCCNNCpNNqCpqNCCrsNNCrNNs = DD3DD2[9]D1DD2D1D2D1[9][9]DD2D1[10]D2D1[10] | |
[89] NCCNNCpqCNNpqNCCNNrsNNCrs = DD3DD2[9]D1[30][49] | |
[90] CCpqCCNCNqprCNqr = DD2D1[6]DD2D1[52]DD2D1D2D1[13][2] | |
[91] CNCCpqNCrsNCCCtpCtqNCCurCus = DD2DD2D1[20]DD2D12DD2D13[23]DD2D12[21] | |
[92] NCCCNpqCCpqqNCCCrstCNrt = DD3DD2[9]D1[66][12] | |
[93] NCCCNCpqrCNCpqNCpNrNCCsNCtNuCsu = DD3DD2[9]D1D2DD2D13DD2D1D2[9]DD2D13[23]D2D1[17] | |
[94] CNCCpqNCprCpNCCsrNCtq = DD2DD2D1DD2D12D2D1DD2D1D2DD2D13DD2D1D2[9]DD2D111DD2D111[25][17] | |
[95] CpNCCqNCCrqNCspNCNCCptut = DD2DD2D1[20]DD2D1D2DD2D13DD2D1D2[9]DD2D111DD2D111DD2D1D2[25]1 | |
[96] CNCCpqNCrsNCCCstCrtNCCquCpu = DD2DD2D1[20]DD2D1D2[2][21]DD2D1D2[2]DD2D13[23] | |
[97] CCCCCpqCNrNsrtCCtpCsp = DD2D1D2DD2D1DD2D1D2D3DD2[3]DD2D1DD2D111D3DD2D1[10]DD2D1[6]DD2D1[11]DD2D1D2D2D13DD2D11[3]211 | |
[98] CCNCpNqrCNCpNNrNq = DD2D1DD2D13D2DD2D1DD2D1D2D1DD2D1[10]D2D1[10]DD2D1[6]D2[20]DD2D13[3]1 | |
[99] CNNCCpqNCrNCrNsNCCNCtNuuNCsp = DD2D1D3DD2[9]D1[17]DD2D1DD2[2]D1[33]DD2D13DD2D1DD22D1[3]DD2D13[3] | |
[100] CCpqCCNCNpqrCNqr = DD2D1[6]DD2D1D2DD2D1D2DD2D13DD2D1D2D1[10]DD2D1D2[9]11[52] | |
[101] NCCNCCpqNCpNqNpNCNrNCCrsNCrt = DD3DD2[9]D1D3DD2D1[10]DD2D1D2D2[20]DD2D13[3]DD2DD2D1[20][3][3] | |
[102] NCCNCpqNCNNpqNCNCNNrsNCrs = DD3DD2[9]D1[61][56] | |
[103] NCCNNCpNNqCNNpqNCCNNrsNNCrNNs = DD3DD2[9]D1DD2D13DD2D13DD2D1DD22D2DD2D13DD2D13DD2D13[3]DD2D13[3]DD2D1[10]DD2D13DD2D13D2D1D3DD2DD2D13DD2D13DD2D13[3]1 | |
[104] NCCpCNNCpqNCpNqNCCNNCrsNCrtr = DD3DD2[9]D1DD2D1DD2D1DD22D2DD2D13[3]1DD2D1D2D2[20]1D3DD2DD2D13DD2D1D2DD2D13[9]DD2D11[3][3] | |
[105] NCCCNNCpqrCNprNCCNstCNNCstt = DD3DD2[9]D1DD2[2]D1DD2D1[10][3]DD2D1DD2D1DD2D1D2D1[13]DD2D1D2DD2D12DD2D13[3]13D2D1[10] | |
[106] CNCCpqNCrqCCNprq = DD2D1D2D1[13]DD2DD2D12DD2D11DD2D12DD2D13[23]DD2D1[24]DD2D12[21] | |
[107] CNNCCpqNCrsNCCsNqNCNrp = DD2DD2D1[20]DD2D1DD2D1DD22D111DD2D13DD2D1DD22D1DD2D13[3]DD2D13[3]DD2D1DD22D1[3]DD2D11DD2D13DD2D1DD22D1[3]DD2D13[3] | |
[108] NCCpNCCNpqNCNprNCNCCNstNCNsNts = DD3DD2[9]D1DD2DD2D1[20][7][7]D3DD2D1[10]DD2D1D2D2[20]1 | |
[109] NCCNCpNqNCqNpNCNCrNsNCsNr = DD3DD2[9]D1[60][60] | |
[110] NCCCNCpNqrCpCqrNCCsCtuCNCsNtu = DD3DD2[9]D1[50][72] | |
[111] CNNCCCNpqpNCrCNrsNCCtqNCuCvu = DD2DD2D1[20]DDD22D2DD2D13[3]D1D3DD2DD2D1[20]DD2D1D2DD2D13D2D1DD2D1[10]11D1[7]D11 | |
[112] NCCNCpNNqNCpqNCNCrsNCrNNs = DD3DD2[9]D1D3DD2D1[10]DD2D1D2D1[10][9]D3DD2D1[10]DD2D1D2D1[9][9] | |
[113] NCCNCpqNCpNNqNCNCrNNsNCrs = DD3DD2[9]D1D3DD2D1[10]DD2D1D2D1[9][9]D3DD2D1[10]DD2D1D2D1[10][9] | |
[114] CNCCpqNCrsCCNprCNqs = DD2DD2D12DD2D11DD2D12[21]DD2D1[6]D[24]DD2D1DD22D2DD2D13[3]DD2D13[23] | |
[115] NCCCNCpqCprCpCNqrNCCsCNtuCNCvtCsu = DD3DD2[9]D1DD2D1DD22D11DD2D1D2D12[71]DD2D1DD2[2]D1[39]2 | |
[116] NCCCpqNCCrCsrNCCNpqqNCNCtNCCNuvwCuw = DD3DD2[9]D1DD2D1D3DD2[9]D11[69]DD2DD2D12[21]D1[7] | |
[117] NCCNCCpqNCNpqqNCrNCCsrNCtr = DD3DD2[9]D1DD2D1[13]DD2DD2D12DD2D13[23]D[24][17]DD2DD2D13DD2D1D2[9]DD2D1111 | |
[118] CNCCpqNCrsCNCpNrNCqNs = DD2DD2D1DD2D12D2D1[20]DD2DD2D12DD2D13[23]D1[25]DD2DD2D12[21]D1[17] | |
[119] NCCCNCpqrCpCNqrNCCsCNtuCNCstu = DD3DD2[9]D1[71][79] | |
[120] NCCCpqNCCpNCpNqNCNCrsrNCNCCtNCuNvwCtv = DD3DD2[9]D1DD2D1DD2[20]D1[25]D2[20]DD2D1D2D1[17][25] | |
[121] NCCCNCpNqrCNCqrNpNCCNCstNuCNCuNst = DD3DD2[9]D1D[24]DD2DD2D12DD2D11[2]D1DD2D13DD2D1D2[9]DD2D13[3]DD2D1DD22D1[17]DD2D13D2D1DD2D1[10][3] | |
[122] NCCNCpNNqNCNNpqNCNCNNrsNCrNNs = DD3DD2[9]D1D3DD2D1[10]DD2D1DD2D13DD2D13D2D1D3DD2DD2D13DD2D13DD2D13[3]1[9]D3DD2D1DD2D1[10]3DD2D13DD2D1DD22D2DD2D13DD2D13DD2D13[3]DD2D13[3] | |
[123] CNCCpqNCrsNCCNCptNCqtNCNCruNCsu = D3DD2D1[10]DD2D1D2D1D3DD2D1[10]D[24]DD2D1D2DD2D12DD2D13[3]DD2D13[3]DD2DD2D12DD2D13[3]D1[53] | |
[124] NCCNCCNpqNNqNCpNNqNCNCrsNCCNrts = DD3DD2[9]D1D3DD2D1[10]DD2D1DD2D1D2D1[13]DD2DD2D12DD2D11[2]D1DD2D13D2D1D3DD2DD2D13DD2D13DD2D13[3]1[9]D3DD2D1[10]DD2D1DD22D1[7]DD2D13[3] | |
[125] NCCNCCpqNCprCpNCqNrNCCsNCtNuNCCstNCsu = DD3DD2[9]D1[84]DD2DD2D1[20]D2D1[25]D2D1[17] | |
[126] NCCCpNCqNrNCCpqNCprNCNCCstNCsuCsNCtNu = DD3DD2[9]D1DD2DD2D1[20]D2D1[25]D2D1[17][84] | |
[127] CCpNqNCCNCCNrpNqNCrNqNCNCstNCCNsut = DD2DD2D1[20]DD2DD2D1DD2D12D2D1[20]D[24]DD2D1DD22D11DD2D11DD2D12[2]D1[17]D1D3DD2D1[10]DD2DD2D12DD2D13[3]D1[7] | |
[128] CNCCpqNCrsNCCCNptCNqtNCCNruCNsu = D3DD2D1[10]DD2D1D2D1D3DD2D1[10]DD2D1[6]D[24][30]DD2DD2D12DD2D13[3]D1[67] | |
[129] NCCNCpNNCCpqrNCqNNCCpqrNCNCsNNCtNCsuNCuNNCtNCsu = DD3DD2[9]D1DD2DD2D13DD2DD2D12DD2D11[3]DD2D1DD2D1D2DD2D12DD2D13[3]1D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]11[3]1DD2DD2D13DD2DD2D12DD2D11[3]DD2D1DD2D1D2DD2D12DD2D13[3]1D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]1111 | |
[130] NCCCNCpqCrqCNCpNrqNCCNCsNtuCNCsvCtu = DD3DD2[9]D3DD2[3]DD2D11DD2D1[43]D3DD2D1[10]DD2D1D2D2D1[36]1DD2DD2D12DD2D11[2]D1DD2D13DD2D1D2[9]DD2D13[23] | |
[131] NCCCNCpNqrCNCpNNrNqNCCNCsNNtuCNCsut = DD3DD2[9]D1[98]D[24]DD2DD2D12DD2D11[2]D1[33] | |
[132] NCCNCCpqNCrqCCNprqNCCCNstuNCCsuNCtu = DD3DD2[9]D1[106]DD2DD2D1[20][18]DD2D1DD22D111 | |
[133] CNCNCCpqNCrsNNCCqtNCurNCCptNCus = DD2DD2D1[20]DD2DD2D1[2]D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]11[3]D3DD2D1DD2D1[10][7][3]DD2DD2D12DD2D13DD2DD2D12DD2D11[3]D1DD2D1D2[3]DD2D111D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]111 | |
[134] NCCNCCNpqNNNrNCrNCNqpNCNCsNCNtuNCCNutNNNs = DD3DD2[9]D1D3DD2D1[10]DD2D1DD2[2]D1[19]DD2D13DD2D1DD22D2DD2D13DD2D13DD2D13[3]DD2D13[3]D3DD2D1DD2D1[10]3DD2D1D2D1[9]DD2DD2D12DD2D13[3]D1DD2D13DD2D1D2D1[10][9] | |
[135] NCCNCpNCqrNCpNCNCsNqrNCNCtNCNCtNuvNCtNCuv = DD3DD2[9]D1DD2DD2D13DD2D1D2[9]DD2D13[23]DD2DD2D12[21]D1[17]D3DD2D1[10]DDD22D2DD2D13[3]D1D2D[24]DD2D1DD2D1D2DD2D12DD2D13[3]1[20] | |
[136] NCCNCNCpNqrNCpNNCqrNCNCsNNCtuNCNCsNtu = DD3DD2[9]D1D3DD2D1[10]DD2D1DD2D1[72]D2D1[9][9]D3DD2D1[10]DD2D1DD2D1D2D1[10][50][9] | |
[137] CNCCpqNNCCrCstNCCupvNCCNCrNstNCpNCvNq = DD2DD2D1[20]DD2D1[72]D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]11[3]DD2DD2D1DD2D12D2D1[20]DD2D1DD2D1DD22D111D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]111[25] | |
[138] NNCNCCpqNCqpNNCCpNqNCNqp = D[10]DD2D1[10]DD2DD2D1DD2D12D2D1DD2D13DD2D1D2D1[10]DD2D1D2[9]1DD2D1D2D1[47]DD2D1D2[2][21]DD2D1[62][25] | |
[139] NCCNNCCpqNCrsCNNCpNNqNCrNNsNCCNNCtNNuNCvNNwNNCCtuNCvw = DD3DD2[9]D1DD2D1D2D1D3DD2D1[10]DD2D1D2D1[9][9]DD2DD2D12DD2D13[3]D1DD2D1D2D1[9][9]DD2D1[10]DD2D1D2D1D3DD2D1[10]DD2D1D2D1[10][9]DD2[2]D1DD2D1[10]D2D1[10] | |
[140] NCCCpNCCqrNCstNCCCpqCprNCCpsCptNCNCCCuvCwxNCCyzCwaCwNCCvxNCza = DD3DD2[9]D1DD2DD2D1[20]DD2D12D2D1[25]DD2D12D2D1[17]DD2DD2D1DD2D12D2D1[20]DD2D1[11]DD2D1DD22D11DD2D13[23]DD2D1[11]DD2DD2D12[21]D11 | |
[141] NCCNCpNCqrCNNCpqNCpNrNCCNNCstNCsNuNCsNCtu = DD3DD2[9]D1DD2D1D2DD2D1[52]DD2D1DD2D12D2D1DD2D13DD2D1D2D1[10]DD2D1D2[9]1[9]1D3DD2D1DD2DD2D1DD2D1D2DD2D13DD2D1D2DD2D13[9]11D2D1[25]D2D1[31][9] | |
[142] NCCNCCpNqNCNrsNCCqNpNCNsrNCNCCtNuNCNvwNCCuNtNCNwv = DD3DD2[9]D1DD2DD2D1[20]DD2D13DD2D1DD22D2DD2D13[3]DD2D13[23]D[24][17]DD2DD2D1[20]DD2D13DD2D1DD22D2DD2D13[3]DD2D13[23]D[24][17] | |
[143] NCCNCCpqNCrsNCCNsNrNCNqNpNCNCCNtNuNCNvNwNCCwvNCut = DD3DD2[9]D1DD2DD2D1[20]D[24]DD2D1DD22D2DD2D13[3][21]D[24]DD2D1DD22D2DD2D13[3]DD2D13[23]DD2DD2D1[20]DD2D13[17]DD2D13[25] | |
[144] NCNCNCCCNCpNqrCpCqrNCCsCtuCNCsNtuNNCCCvCwxCwCvxNCCyCzaCzCyaNNCCCbCcdCNCbNcdNCCNCeNfgCeCfg = DD3DD2[9]D1DD3DD2[9]D1[110]DD3DD2[9]D1[11][11]DD3DD2[9]D1[72][50] | |
[145] CNCNCCpqNCrsNNCCtuNCvwNCCCNptCNquNCCNrvCNsw = DD2DD2D13DD2D1D2[9]DD2D11DD2DD2D12DD2D11DD2D1[2]D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]11[3]DD2D1D2[2]DD2D11DD2D1[52]D3DD2D1DD2D1[10][7][3]DD2DD2D12DD2D11DD2D1[2]D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]111DD2D1[6]D[24]DD2D1DD22D2DD2D13[3]DD2D13DD2DD2D12DD2D11[3]D1DD2D1D2[3]DD2D111 | |
[146] CNCCpqNCrsNCCNCCstNCupNCCrtNCuqNCNCCqvNCwrNCCpvNCws = DD2DD2D1[20]DD2DD2D1DD2D12D2D1[20]DD2D1D2DD2D12DD2D13[23][21]DD2DD2D12DD2D11DD2D12DD2D13[23]D1[17]DD2DD2D1DD2D12D2D1[20]DD2D1D2DD2D12DD2D13[23]DD2D13[23]DD2DD2D12DD2D11DD2D12[21]D1[17] | |
[147] NCCNCCpqNCqpNNCCpNqNCNqpNCNNCCrNsNCNtuNCCusNCtr = DD3DD2[9]D1DD2D1[10]DD2DD2D1DD2D12D2D1DD2D13DD2D1D2D1[10]DD2D1D2[9]1DD2D1D2D1[47]DD2D1D2[2][21]DD2D1[62][25]DD2D1DD2DD2D1[20]DD2D1DD22D11DD2D11DD2D13DD2D1DD22D111DD2D1[18]DD2D13[12][9] | |
[148] NCCNCCpqNCqpCNNCpNqNCNpNNqNCCNNCrNsNCNtNNuNCCtsNCur = DD3DD2[9]D1DD2D1DD2D1DD22D2DD2D13[3]1DD2DD2D1DD2D12D2D1[20]DD2D1[62][25]DD2D1D2D1[47]DD2D1D2[2][21]DD2D1DD2DD2D1[20]DD2D1[18]DD2D13DD2D1DD22D111DD2D1DD2D13[12]D2D1[17]DD2D1DD22D1[10]1 | |
[149] CNCNCCpqNCrsNNCCtuNCvwNCCNCpNtNCqNuNCNCrNvNCsNw = DD2DD2D1[20]DD2DD2D1DD2D12D2D1[20]DD2D1[43]D3DD2D1DD2D1[10][7][3]DD2DD2D1[2]D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]11[3]D1[17]DD2DD2D1DD2D12D2D1[20]DD2DD2D12DD2D13DD2DD2D12DD2D11[3]D1DD2D1D2[3]DD2D111D1[25]DD2D1[36]D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13[3]111 | |
[150] NCCNCNNCpNqNCNpNNqCNNCpNNqNCqNNpNCCNNCrNsNCtNNuNCNNCusNCNrNNt = DD3DD2[9]D1DD2DD2D1[2]DD2DD2D1DD2D12D2D1[20]DD2D1DD2D1DD2D1D2D1[13][6]3[17]DD2D1DD2D1D2D1DD23D11DD2D1D2D1DD2D1DD22D2DD2D13[3]1DD2D12D2D1[3]D3DD2D1[10][7]D1DD2D1D2D1[9][9]DD2D1DD2DD2D1DD2D1D2DD2D13DD2D1D2DD2D13[9]11DD2D13DD2D1D2D1[17]DD2D1DD22D111DD2D1D2D1D3DD2D1[10]DD2D13DD2D13[3][12]DD2D1DD22D1[10]1 | |
[151] NCCCCNCNpqrsNCNCCpsNCqsNCrsNCNCNCCtuNCvuNCwuCCNCNtvwu = DD3DD2[9]D1DD2DD2D1[20]DD2D1DD2DD2D1[20][18]DD2D1DD22D111[18]DD2D1DD22D111DD2D1D2D1[13]DD2DD2D12DD2D11DD2D12[21]DD2D1[6]DD2D1DD2D1[52][106][25] | |
[152] NCCNCCCNpqCNrsNCCNtuCNvsCNsNCCprNCtvNCCNwNCCxyNCzaNCCCNxwCNywNCCNzwCNaw = DD3DD2[9]D1DD2DD2D1DD2D12D2D1[20]DD2D1[11]DD2D1[24]DD2D1DD22D1[7]DD2D13[23]DD2D1[11]DD2D1[24]DD2DD2D12[21]D1[7]DD2DD2D1[20]DD2D1DD2D1DD2D1DD2[2]D1[19][24]2D2D1[25]DD2D1DD2D1DD2D1DD2[2]D1[19][24]2D2D1[17] | |
[153] NCCCpNCCqrNCstNCCNCpNqNCpNrNCNCpNsNCpNtNCNCCNCuNvNCwNxNCNCuNyNCzNaCuNCCvxNCya = DD3DD2[9]D1DD2DD2D1[20]DD2D1[52]DD2D12D2D1D[24]DD2D1DD22D2DD2D13[3]DD2D13[23]DD2D1[52]DD2D12D2D1D[24]DD2D1DD22D2DD2D13[3][21]DD2DD2D1DD2D12D2D1[20]DD2D1D2D13DD2D1[29]DD2D13[25]DD2D1D2D13DD2D1[29]DD2D13[17] | |
[154] NCCNCCNCCpqNCrstNCuNCCsvNCrpNCCsNCCqtNCuvNCNCCruNCtrpNCNCCwNCCxyNCzaNCNCCxzNCybcNCCNCCcxNCxwyNCzNCCwaNCbc = DD3DD2[9]D1DD2DD2D1[20]DD2DD2D12DD2D1D2D1[20]DD2DD2D12DD2D11DD2D12DD2D13[23]D1DD2D1D2DD2D13DD2D1D2[9]DD2D111DD2D111DD2DD2D12DD2D11DD2D12DD2D1D2D1[25][17]D11DD2D1D2D1DD2DD2D1[66]DD2D1DD22D1[3]DD2D1D2D1DD2D13[12]D[24][17]DD2D1[1]DD2D1D2D1[17][25]DD2DD2D12DD2D1D2D1[20]DD2DD2D12DD2D11DD2D12[21]D1[25]DD2D1D2DD2D12[21]DD2D13[23]DD2DD2D1[20]DD2D1D2D1DD2DD2D1[59]DD2D13DD2D1DD22D1[3]D[24][25]DD2D1D2DD2D1D2[25]1[17]DD2DD2D1DD2D12D2D1[20]DD2D1D2DD2D12DD2D13[23][21]DD2DD2D12DD2D11DD2D12DD2D13[23]D1[17]DD2DD2D1DD2D12D2D1[20]DD2DD2D12DD2D11DD2D12DD2D1D2D1[17][25]D11DD2DD2D12DD2D11DD2D12[21]D1DD2D1DD2D1DD22D111DD2D13DD2D1D2[9]DD2D111 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment