Last active
December 11, 2017 06:39
-
-
Save xandaschofield/3c4070b2f232b185ce6a09e47b4e7473 to your computer and use it in GitHub Desktop.
Quick code to plots significant values with words (based on FightinWords from jmhessel)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Adapted from https://github.com/jmhessel/FightingWords | |
import matplotlib | |
matplotlib.use('Agg') | |
from matplotlib import pyplot as plt | |
import numpy as np | |
import seaborn as sns | |
from sklearn.feature_extraction.text import CountVectorizer as CV | |
import string | |
exclude = set(string.punctuation) | |
def basic_sanitize(in_string): | |
'''Returns a very roughly sanitized version of the input string.''' | |
return_string = ''.join([ch for ch in in_string if ord(ch) < 128 and ch not in exclude]).lower() | |
return_string = ' '.join(return_string.split()) | |
return return_string | |
def bayes_compare_language(l1, l2, ngram=1, prior=.01, cv=None, sig_val=2.573): | |
''' | |
Arguments: | |
- l1, l2; a list of strings from each language sample | |
- ngram; an int describing up to what n gram you want to consider (1 is unigrams, | |
2 is bigrams + unigrams, etc). Ignored if a custom CountVectorizer is passed. | |
- prior; either a float describing a uniform prior, or a vector describing a prior | |
over vocabulary items. If you're using a predefined vocabulary, make sure to specify that | |
when you make your CountVectorizer object. | |
- cv; a sklearn.feature_extraction.text.CountVectorizer object, if desired. | |
Returns: | |
- A list of length |Vocab| where each entry is a (n-gram, zscore) tuple.''' | |
if cv is None and type(prior) is not float: | |
print("If using a non-uniform prior:") | |
print("Please also pass a count vectorizer with the vocabulary parameter set.") | |
quit() | |
l1 = [basic_sanitize(l) for l in l1] | |
l2 = [basic_sanitize(l) for l in l2] | |
if cv is None: | |
cv = CV(decode_error = 'ignore', min_df = 10, max_df = .5, ngram_range=(1,ngram), | |
binary = False, | |
max_features = 15000) | |
counts_mat = cv.fit_transform(l1+l2).toarray() | |
# Now sum over languages... | |
vocab_size = len(cv.vocabulary_) | |
print("Vocab size is {}".format(vocab_size)) | |
if type(prior) is float: | |
priors = np.array([prior for i in range(vocab_size)]) | |
else: | |
priors = prior | |
z_scores = np.empty(priors.shape[0]) | |
count_matrix = np.empty([2, vocab_size], dtype=np.float32) | |
count_matrix[0, :] = np.sum(counts_mat[:len(l1), :], axis = 0) | |
count_matrix[1, :] = np.sum(counts_mat[len(l1):, :], axis = 0) | |
a0 = np.sum(priors) | |
n1 = 1.*np.sum(count_matrix[0,:]) | |
n2 = 1.*np.sum(count_matrix[1,:]) | |
print("Comparing language...") | |
for i in range(vocab_size): | |
#compute delta | |
term1 = np.log((count_matrix[0,i] + priors[i])/(n1 + a0 - count_matrix[0,i] - priors[i])) | |
term2 = np.log((count_matrix[1,i] + priors[i])/(n2 + a0 - count_matrix[1,i] - priors[i])) | |
delta = term1 - term2 | |
#compute variance on delta | |
var = 1./(count_matrix[0,i] + priors[i]) + 1./(count_matrix[1,i] + priors[i]) | |
#store final score | |
z_scores[i] = delta/np.sqrt(var) | |
index_to_term = {v: k for k, v in cv.vocabulary_.items()} | |
sorted_indices = np.argsort(z_scores) | |
return_list = [(index_to_term[i], z_scores[i]) for i in sorted_indices] | |
x_vals = count_matrix.sum(axis=0) | |
y_vals = z_scores | |
sizes = abs(z_scores) * 2 | |
neg_color, pos_color, insig_color = ('orange', 'purple', 'grey') | |
colors = [] | |
annots = [] | |
for i, y in enumerate(y_vals): | |
if y > sig_val: | |
colors.append(pos_color) | |
annots.append(index_to_term[i]) | |
elif y < -sig_val: | |
colors.append(neg_color) | |
annots.append(index_to_term[i]) | |
else: | |
colors.append(insig_color) | |
annots.append(None) | |
fig, ax = plt.subplots() | |
ax.scatter(x_vals, y_vals, c=colors, s=sizes, linewidth=0) | |
for i, annot in enumerate(annots): | |
if annot is not None: | |
ax.annotate(annot, (x_vals[i], y_vals[i]), color=colors[i], size=sizes[i]) | |
ax.set_xscale('log') | |
plt.savefig('test.pdf') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment