Skip to content

Instantly share code, notes, and snippets.

embeddings_mu = nn.Embedding(n_words, n_dim)
embeddings_lv = nn.Embedding(n_words, n_dim)
...
vector_mu = embeddings_mu(c_index)
vector_lv = embeddings_lv(c_index)
def normal(mu, lv):
random = torch.FloatTensor(std.size()).normal_()
return mu + random * torch.exp(0.5 * lv)
from torch_trainer.trainer import Trainer
from torch_trainer.callbacks import rms_callback
from torch import nn
from torch.optim import Adam
import torch.nn.functional as F
import numpy as np
import pandas as pd