-
-
Save xixixao/9005731 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I = [5, 6, 7] | |
matrix = [ | |
[1, 10, -57, -9, -24, 0, 0, 0, 0] | |
[0, 0.5, -5.5, -2.5, 9, 1, 0, 0, 0] | |
[0, 0.5, -1.5, -0.5, 1, 0, 1, 0, 0] | |
[0, 1, 0, 0, 0, 0, 0, 1, 1] | |
] | |
max = (array) -> | |
m = -Infinity | |
mI = 0 | |
for el, i in array | |
if el > m | |
m = el | |
mI = i | |
[m, mI] | |
min = (array) -> | |
m = Infinity | |
mI = 0 | |
for el, i in array | |
if el < m | |
m = el | |
mI = i | |
[m, mI] | |
step = (matrix, I) -> | |
[objective, basics...] = matrix | |
[value, newBasic] = max objective | |
if value <= 0 | |
return | |
[value, newNonBasicI] = min (row[row.length - 1] / row[newBasic] for row in basics) | |
newNonBasic = I[newNonBasicI] | |
pivotRow = basics[newNonBasicI] | |
pivot = pivotRow[newBasic] | |
pivotRow = (el / pivot for el in pivotRow) | |
newMatrix = | |
for row in matrix | |
q = row[newBasic] | |
for el, i in row | |
el - q * pivotRow[i] | |
newMatrix[1 + newNonBasicI] = pivotRow | |
newI = for v in I | |
if v is newNonBasic | |
newBasic | |
else | |
v | |
[newMatrix, newI] | |
simplex = (matrix, I, limit) -> | |
for i in [0...limit] | |
res = step matrix, I | |
break unless res | |
printTableau [matrix, I] = res | |
printTableau = ([matrix, I]) -> | |
head = "\tz\t" + ("x<sub>#{i}</sub>" for i in [1...matrix[0].length - 1]).join '\t' | |
I = ["z"].concat I | |
head += "<br>" + ((for row, i in matrix | |
I[i] + "\t" + (toSimpleFraction el for el in row).join '\t' | |
).join '<br>') + "<br><br>" | |
toSimpleFraction = (x) -> | |
[v, d] = toFraction x | |
if d == 1 | |
v | |
else | |
"#{v}/#{d}" | |
toFraction = (x, error = 0.000001) -> | |
n = Math.floor x | |
x -= n | |
if x < error | |
return [n, 1] | |
else if 1 - error < x | |
return [n + 1, 1] | |
# The lower fraction is 0/1 | |
lower_n = 0 | |
lower_d = 1 | |
# The upper fraction is 1/1 | |
upper_n = 1 | |
upper_d = 1 | |
loop | |
# The middle fraction is (lower_n + upper_n) / (lower_d + upper_d) | |
middle_n = lower_n + upper_n | |
middle_d = lower_d + upper_d | |
# If x + error < middle | |
if middle_d * (x + error) < middle_n | |
# middle is our new upper | |
upper_n = middle_n | |
upper_d = middle_d | |
# Else If middle < x - error | |
else if middle_n < (x - error) * middle_d | |
# middle is our new lower | |
lower_n = middle_n | |
lower_d = middle_d | |
# Else middle is our best fraction | |
else | |
return [n * middle_d + middle_n, middle_d] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment