Skip to content

Instantly share code, notes, and snippets.

@xor-gate
Last active November 26, 2015 20:12
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save xor-gate/3eb721f64bce27db8a31 to your computer and use it in GitHub Desktop.
Save xor-gate/3eb721f64bce27db8a31 to your computer and use it in GitHub Desktop.
c-struct-serializer-msgpack

C Struct Serializer to MessagePack

CC:=clang-3.5
CFLAGS:=-Wall -Wextra -std=c99 -ggdb -O0 -I.
star_table: star_table.c
$(CC) $(CFLAGS) -o $@ $< mpack.c
test: star_table
./star_table; ~/bin/msgpack-cli decode test.bin --pp
pp: star_table.c
gcc -I. -E -P $< > star_table.c.pp
clean:
rm -f test.bin
rm -f star_table
rm -f star_table.c.pp
/**
* This is a sample MPack configuration file. Copy it to mpack-config.h somewhere
* in your project's include tree and, optionally, edit it to suit your setup.
* In most cases you can leave this file with the default config.
*/
#ifndef MPACK_CONFIG_H
#define MPACK_CONFIG_H 1
/*
* Features
*/
/** Enables compilation of the base Tag Reader. */
#define MPACK_READER 1
/** Enables compilation of the static Expect API. */
#define MPACK_EXPECT 1
/** Enables compilation of the dynamic Node API. */
#define MPACK_NODE 1
/** Enables compilation of the Writer. */
#define MPACK_WRITER 1
/*
* Dependencies
*/
/**
* Enables the use of C stdlib. This allows the library to use malloc
* for debugging and in allocation helpers.
*/
#define MPACK_STDLIB 1
/**
* Enables the use of C stdio. This adds helpers for easily
* reading/writing C files and makes debugging easier.
*/
#define MPACK_STDIO 1
/**
* \def MPACK_MALLOC
*
* Defines the memory allocation function used by mpack. This is used by
* helpers for automatically allocating data the correct size, and for
* debugging functions. If this macro is undefined, the allocation helpers
* will not be compiled.
*
* A memory allocator is required for the Node API.
*/
/**
* \def MPACK_REALLOC
*
* Defines the realloc function used by mpack. It is used by growable buffers
* to resize more quickly.
*
* This is optional, even when MPACK_MALLOC is used. If MPACK_MALLOC is
* set and MPACK_REALLOC is not, MPACK_MALLOC is used with a simple copy
* to grow buffers.
*/
#if defined(MPACK_STDLIB) && !defined(MPACK_MALLOC)
#define MPACK_MALLOC malloc
#define MPACK_REALLOC realloc
#endif
/**
* \def MPACK_FREE
*
* Defines the memory free function used by mpack. This is used by helpers
* for automatically allocating data the correct size. If this macro is
* undefined, the allocation helpers will not be compiled.
*
* A memory allocator is required for the Node API.
*/
#if defined(MPACK_STDLIB) && !defined(MPACK_FREE)
#define MPACK_FREE free
#endif
/**
* Enables the setjmp()/longjmp() error handling option. MPACK_MALLOC is required.
*
* Note that you don't have to use it; this just enables the option. It can be
* disabled to avoid the dependency on setjmp.h .
*/
#if defined(MPACK_MALLOC)
#define MPACK_SETJMP 1
#endif
/*
* Debugging options
*/
/**
* \def MPACK_DEBUG
*
* Enables debug features. You may want to wrap this around your
* own debug preprocs. By default, they are enabled if DEBUG or _DEBUG
* are defined.
*
* Note that MPACK_DEBUG cannot be defined differently for different
* source files because it affects layout of structs defined in header
* files. Your entire project must be compiled with the same value of
* MPACK_DEBUG. (This is why NDEBUG is not used.)
*/
#if defined(DEBUG) || defined(_DEBUG)
#define MPACK_DEBUG 1
#else
#define MPACK_DEBUG 0
#endif
/**
* Set this to 1 to implement a custom mpack_assert_fail() function. This
* function must not return, and must have the following signature:
*
* void mpack_assert_fail(const char* message)
*
* Asserts are only used when MPACK_DEBUG is enabled, and can be triggered
* by bugs in mpack or bugs due to incorrect usage of mpack.
*/
#define MPACK_CUSTOM_ASSERT 0
/**
* \def MPACK_READ_TRACKING
*
* Enables compound type size tracking for readers. This ensures that the
* correct number of elements or bytes are read from a compound type.
*
* This is enabled by default in debug builds (provided a malloc() is
* available.)
*/
#if MPACK_DEBUG && MPACK_READER && defined(MPACK_MALLOC)
#define MPACK_READ_TRACKING 1
#endif
/**
* \def MPACK_WRITE_TRACKING
*
* Enables compound type size tracking for writers. This ensures that the
* correct number of elements or bytes are written in a compound type.
*
* Note that without write tracking enabled, it is possible for buggy code
* to emit invalid MessagePack without flagging an error by writing the wrong
* number of elements or bytes in a compound type. With tracking enabled,
* MPACK will catch such errors and break on the offending line of code.
*
* This is enabled by default in debug builds (provided a malloc() is
* available.)
*/
#if MPACK_DEBUG && MPACK_WRITER && defined(MPACK_MALLOC)
#define MPACK_WRITE_TRACKING 1
#endif
/*
* Miscellaneous
*/
/**
* Stack space to use when initializing a reader or writer with a
* stack-allocated buffer.
*/
#define MPACK_STACK_SIZE 4096
/**
* Buffer size to use for allocated buffers (such as for a file writer.)
*/
#define MPACK_BUFFER_SIZE 65536
/**
* Number of nodes in each allocated node page.
*
* Nodes are 16 bytes when compiled for a 32-bit architecture and
* 24 bytes when compiled for a 64-bit architecture.
*
* Using as many nodes fit in one memory page seems to provide the
* best performance, and has very little waste when parsing small
* messages.
*/
#define MPACK_NODE_PAGE_SIZE (4096 / sizeof(mpack_node_t))
/**
* The initial depth for the node parser. When MPACK_MALLOC is available,
* the node parser has no practical depth limit, and it is not recursive
* so there is no risk of overflowing the call stack.
*/
#define MPACK_NODE_INITIAL_DEPTH 8
/**
* The maximum depth for the node parser if MPACK_MALLOC is not available.
* The parsing stack is placed on the call stack.
*/
#define MPACK_NODE_MAX_DEPTH_WITHOUT_MALLOC 32
#endif
/**
* The MIT License (MIT)
*
* Copyright (c) 2015 Nicholas Fraser
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
* This is the MPack 0.6 amalgamation package.
*
* http://github.com/ludocode/mpack
*/
#define MPACK_INTERNAL 1
#define MPACK_EMIT_INLINE_DEFS 1
#include "mpack.h"
/* mpack-platform.c */
// We define MPACK_EMIT_INLINE_DEFS and include mpack.h to emit
// standalone definitions of all (non-static) inline functions in MPack.
#define MPACK_INTERNAL 1
#define MPACK_EMIT_INLINE_DEFS 1
/* #include "mpack-platform.h" */
/* #include "mpack.h" */
#if MPACK_DEBUG && MPACK_STDIO
#include <stdarg.h>
#endif
#if MPACK_DEBUG && MPACK_STDIO
void mpack_assert_fail_format(const char* format, ...) {
char buffer[512];
va_list args;
va_start(args, format);
vsnprintf(buffer, sizeof(buffer), format, args);
va_end(args);
buffer[sizeof(buffer) - 1] = 0;
mpack_assert_fail(buffer);
}
void mpack_break_hit_format(const char* format, ...) {
char buffer[512];
va_list args;
va_start(args, format);
vsnprintf(buffer, sizeof(buffer), format, args);
va_end(args);
buffer[sizeof(buffer) - 1] = 0;
mpack_break_hit(buffer);
}
#endif
#if MPACK_CUSTOM_ASSERT
void mpack_break_hit(const char* message) {
// If we have a custom assert handler, break just wraps it
// for simplicity.
mpack_assert_fail(message);
}
#else
void mpack_assert_fail(const char* message) {
MPACK_UNUSED(message);
#if MPACK_STDIO
fprintf(stderr, "%s\n", message);
#endif
#if defined(__GCC__) || defined(__clang__)
__builtin_trap();
#elif defined(WIN32)
__debugbreak();
#endif
#if MPACK_STDLIB
abort();
#elif defined(__GCC__) || defined(__clang__)
__builtin_abort();
#endif
MPACK_UNREACHABLE;
}
void mpack_break_hit(const char* message) {
MPACK_UNUSED(message);
#if MPACK_STDIO
fprintf(stderr, "%s\n", message);
#endif
#if defined(__GCC__) || defined(__clang__)
__builtin_trap();
#elif defined(WIN32)
__debugbreak();
#elif MPACK_STDLIB
abort();
#elif defined(__GCC__) || defined(__clang__)
__builtin_abort();
#endif
}
#endif
#if !MPACK_STDLIB
// The below are adapted from the C wikibook:
// https://en.wikibooks.org/wiki/C_Programming/Strings
void* mpack_memset(void *s, int c, size_t n) {
unsigned char *us = (unsigned char *)s;
unsigned char uc = (unsigned char)c;
while (n-- != 0)
*us++ = uc;
return s;
}
void* mpack_memcpy(void *s1, const void *s2, size_t n) {
char * __restrict dst = (char *)s1;
const char * __restrict src = (const char *)s2;
while (n-- != 0)
*dst++ = *src++;
return s1;
}
void* mpack_memmove(void *s1, const void *s2, size_t n) {
char *p1 = (char *)s1;
const char *p2 = (const char *)s2;
if (p2 < p1 && p1 < p2 + n) {
p2 += n;
p1 += n;
while (n-- != 0)
*--p1 = *--p2;
} else
while (n-- != 0)
*p1++ = *p2++;
return s1;
}
int mpack_memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char *us1 = (const unsigned char *) s1;
const unsigned char *us2 = (const unsigned char *) s2;
while (n-- != 0) {
if (*us1 != *us2)
return (*us1 < *us2) ? -1 : +1;
us1++;
us2++;
}
return 0;
}
size_t mpack_strlen(const char *s) {
const char *p = s;
while (*p != '\0')
p++;
return (size_t)(p - s);
}
#endif
#if defined(MPACK_MALLOC) && !defined(MPACK_REALLOC)
void* mpack_realloc(void* old_ptr, size_t used_size, size_t new_size) {
if (new_size == 0)
return NULL;
void* new_ptr = MPACK_MALLOC(new_size);
if (new_ptr == NULL)
return NULL;
mpack_memcpy(new_ptr, old_ptr, used_size);
MPACK_FREE(old_ptr);
return new_ptr;
}
#endif
/* mpack-common.c */
#define MPACK_INTERNAL 1
/* #include "mpack-common.h" */
#if MPACK_DEBUG && MPACK_STDIO
#include <stdarg.h>
#endif
const char* mpack_error_to_string(mpack_error_t error) {
#if MPACK_DEBUG
switch (error) {
#define MPACK_ERROR_STRING_CASE(e) case e: return #e
MPACK_ERROR_STRING_CASE(mpack_ok);
MPACK_ERROR_STRING_CASE(mpack_error_io);
MPACK_ERROR_STRING_CASE(mpack_error_invalid);
MPACK_ERROR_STRING_CASE(mpack_error_type);
MPACK_ERROR_STRING_CASE(mpack_error_too_big);
MPACK_ERROR_STRING_CASE(mpack_error_memory);
MPACK_ERROR_STRING_CASE(mpack_error_bug);
MPACK_ERROR_STRING_CASE(mpack_error_data);
#undef MPACK_ERROR_STRING_CASE
default: break;
}
mpack_assert(0, "unrecognized error %i", (int)error);
return "(unknown mpack_error_t)";
#else
MPACK_UNUSED(error);
return "";
#endif
}
const char* mpack_type_to_string(mpack_type_t type) {
#if MPACK_DEBUG
switch (type) {
#define MPACK_TYPE_STRING_CASE(e) case e: return #e
MPACK_TYPE_STRING_CASE(mpack_type_nil);
MPACK_TYPE_STRING_CASE(mpack_type_bool);
MPACK_TYPE_STRING_CASE(mpack_type_float);
MPACK_TYPE_STRING_CASE(mpack_type_double);
MPACK_TYPE_STRING_CASE(mpack_type_int);
MPACK_TYPE_STRING_CASE(mpack_type_uint);
MPACK_TYPE_STRING_CASE(mpack_type_str);
MPACK_TYPE_STRING_CASE(mpack_type_bin);
MPACK_TYPE_STRING_CASE(mpack_type_ext);
MPACK_TYPE_STRING_CASE(mpack_type_array);
MPACK_TYPE_STRING_CASE(mpack_type_map);
#undef MPACK_TYPE_STRING_CASE
default: break;
}
mpack_assert(0, "unrecognized type %i", (int)type);
return "(unknown mpack_type_t)";
#else
MPACK_UNUSED(type);
return "";
#endif
}
int mpack_tag_cmp(mpack_tag_t left, mpack_tag_t right) {
// positive numbers may be stored as int; convert to uint
if (left.type == mpack_type_int && left.v.i >= 0) {
left.type = mpack_type_uint;
left.v.u = left.v.i;
}
if (right.type == mpack_type_int && right.v.i >= 0) {
right.type = mpack_type_uint;
right.v.u = right.v.i;
}
if (left.type != right.type)
return (int)left.type - (int)right.type;
switch (left.type) {
case mpack_type_nil:
return 0;
case mpack_type_bool:
return (int)left.v.b - (int)right.v.b;
case mpack_type_int:
if (left.v.i == right.v.i)
return 0;
return (left.v.i < right.v.i) ? -1 : 1;
case mpack_type_uint:
if (left.v.u == right.v.u)
return 0;
return (left.v.u < right.v.u) ? -1 : 1;
case mpack_type_array:
case mpack_type_map:
if (left.v.n == right.v.n)
return 0;
return (left.v.n < right.v.n) ? -1 : 1;
case mpack_type_str:
case mpack_type_bin:
if (left.v.l == right.v.l)
return 0;
return (left.v.l < right.v.l) ? -1 : 1;
case mpack_type_ext:
if (left.exttype == right.exttype) {
if (left.v.l == right.v.l)
return 0;
return (left.v.l < right.v.l) ? -1 : 1;
}
return (int)left.exttype - (int)right.exttype;
// floats should not normally be compared for equality. we compare
// with memcmp() to silence compiler warnings, but this will return
// equal if both are NaNs with the same representation (though we may
// want this, for instance if you are for some bizarre reason using
// floats as map keys.) i'm not sure what the right thing to
// do is here. check for NaN first? always return false if the type
// is float? use operator== and pragmas to silence compiler warning?
// please send me your suggestions.
// note also that we don't convert floats to doubles, so when this is
// used for ordering purposes, all floats are ordered before all
// doubles.
case mpack_type_float:
return mpack_memcmp(&left.v.f, &right.v.f, sizeof(left.v.f));
case mpack_type_double:
return mpack_memcmp(&left.v.d, &right.v.d, sizeof(left.v.d));
default:
break;
}
mpack_assert(0, "unrecognized type %i", (int)left.type);
return false;
}
#if MPACK_READ_TRACKING || MPACK_WRITE_TRACKING
#ifndef MPACK_TRACKING_INITIAL_CAPACITY
// seems like a reasonable number. we grow by doubling, and it only
// needs to be as long as the maximum depth of the message.
#define MPACK_TRACKING_INITIAL_CAPACITY 8
#endif
mpack_error_t mpack_track_init(mpack_track_t* track) {
track->count = 0;
track->capacity = MPACK_TRACKING_INITIAL_CAPACITY;
track->elements = (mpack_track_element_t*)MPACK_MALLOC(sizeof(mpack_track_element_t) * track->capacity);
if (track->elements == NULL)
return mpack_error_memory;
return mpack_ok;
}
mpack_error_t mpack_track_grow(mpack_track_t* track) {
mpack_assert(track->elements, "null track elements!");
mpack_assert(track->count == track->capacity, "incorrect growing?");
size_t new_capacity = track->capacity * 2;
mpack_track_element_t* new_elements = (mpack_track_element_t*)mpack_realloc(track->elements,
sizeof(mpack_track_element_t) * track->count, sizeof(mpack_track_element_t) * new_capacity);
if (new_elements == NULL)
return mpack_error_memory;
track->elements = new_elements;
track->capacity = new_capacity;
return mpack_ok;
}
#endif
/* The below code is from Bjoern Hoehrmann's Flexible and Economical */
/* UTF-8 decoder, modified to support MPack inlining and add the mpack prefix. */
/* Copyright (c) 2008-2010 Bjoern Hoehrmann <bjoern@hoehrmann.de> */
/* See http://bjoern.hoehrmann.de/utf-8/decoder/dfa/ for details. */
const uint8_t mpack_utf8d[] = {
/* The first part of the table maps bytes to character classes that */
/* to reduce the size of the transition table and create bitmasks. */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
10,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3, 11,6,6,6,5,8,8,8,8,8,8,8,8,8,8,8,
/* The second part is a transition table that maps a combination */
/* of a state of the automaton and a character class to a state. */
0,12,24,36,60,96,84,12,12,12,48,72, 12,12,12,12,12,12,12,12,12,12,12,12,
12, 0,12,12,12,12,12, 0,12, 0,12,12, 12,24,12,12,12,12,12,24,12,24,12,12,
12,12,12,12,12,12,12,24,12,12,12,12, 12,24,12,12,12,12,12,12,12,24,12,12,
12,12,12,12,12,12,12,36,12,36,12,12, 12,36,12,12,12,12,12,36,12,36,12,12,
12,36,12,12,12,12,12,12,12,12,12,12,
};
/* mpack-writer.c */
#define MPACK_INTERNAL 1
/* #include "mpack-writer.h" */
#if MPACK_WRITER
#if MPACK_WRITE_TRACKING
#define MPACK_WRITER_TRACK(writer, error) mpack_writer_flag_if_error(writer, error)
MPACK_STATIC_INLINE_SPEED void mpack_writer_flag_if_error(mpack_writer_t* writer, mpack_error_t error) {
if (error != mpack_ok)
mpack_writer_flag_error(writer, error);
}
#else
#define MPACK_WRITER_TRACK(writer, error) MPACK_UNUSED(writer)
#endif
MPACK_STATIC_INLINE_SPEED void mpack_writer_track_element(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_element(&writer->track, true));
}
void mpack_writer_init(mpack_writer_t* writer, char* buffer, size_t size) {
mpack_memset(writer, 0, sizeof(*writer));
writer->buffer = buffer;
writer->size = size;
MPACK_WRITER_TRACK(writer, mpack_track_init(&writer->track));
}
void mpack_writer_init_error(mpack_writer_t* writer, mpack_error_t error) {
mpack_memset(writer, 0, sizeof(*writer));
writer->error = error;
}
#ifdef MPACK_MALLOC
typedef struct mpack_growable_writer_t {
char** target_data;
size_t* target_size;
} mpack_growable_writer_t;
static void mpack_growable_writer_flush(mpack_writer_t* writer, const char* data, size_t count) {
// This is an intrusive flush function which modifies the writer's buffer
// in response to a flush instead of emptying it in order to add more
// capacity for data. This removes the need to copy data from a fixed buffer
// into a growable one, improving performance.
//
// There are three ways flush can be called:
// - flushing the buffer during writing (used is zero, count is all data, data is buffer)
// - flushing extra data during writing (used is all flushed data, count is extra data, data is not buffer)
// - flushing during teardown (used and count are both all flushed data, data is buffer)
//
// We handle these here, making sure used is the total count in all three cases.
mpack_log("flush size %i used %i data %p buffer %p\n", (int)writer->size, (int)writer->used, data, writer->buffer);
// if the given data is not the old buffer, we'll need to actually copy it into the buffer
bool is_extra_data = (data != writer->buffer);
// if we're flushing all data (used is zero), we should actually grow
size_t new_size = writer->size;
if (writer->used == 0 && count != 0)
new_size *= 2;
while (new_size < (is_extra_data ? writer->used + count : count))
new_size *= 2;
if (new_size > writer->size) {
mpack_log("flush growing from %i to %i\n", (int)writer->size, (int)new_size);
char* new_buffer = (char*)mpack_realloc(writer->buffer, count, new_size);
if (new_buffer == NULL) {
mpack_writer_flag_error(writer, mpack_error_memory);
return;
}
writer->buffer = new_buffer;
writer->size = new_size;
}
if (is_extra_data) {
mpack_memcpy(writer->buffer + writer->used, data, count);
// add our extra data to count
writer->used += count;
} else {
// used is either zero or count; set it to count
writer->used = count;
}
}
static void mpack_growable_writer_teardown(mpack_writer_t* writer) {
mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*)writer->context;
if (mpack_writer_error(writer) == mpack_ok) {
// shrink the buffer to an appropriate size if the data is
// much smaller than the buffer
if (writer->used < writer->size / 2) {
char* buffer = (char*)mpack_realloc(writer->buffer, writer->used, writer->used);
if (!buffer) {
MPACK_FREE(writer->buffer);
mpack_writer_flag_error(writer, mpack_error_memory);
return;
}
writer->buffer = buffer;
writer->size = writer->used;
}
*growable_writer->target_data = writer->buffer;
*growable_writer->target_size = writer->used;
writer->buffer = NULL;
} else if (writer->buffer) {
MPACK_FREE(writer->buffer);
writer->buffer = NULL;
}
MPACK_FREE(growable_writer);
writer->context = NULL;
}
void mpack_writer_init_growable(mpack_writer_t* writer, char** target_data, size_t* target_size) {
*target_data = NULL;
*target_size = 0;
mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*) MPACK_MALLOC(sizeof(mpack_growable_writer_t));
if (growable_writer == NULL) {
mpack_writer_init_error(writer, mpack_error_memory);
return;
}
mpack_memset(growable_writer, 0, sizeof(*growable_writer));
growable_writer->target_data = target_data;
growable_writer->target_size = target_size;
size_t capacity = MPACK_BUFFER_SIZE;
char* buffer = (char*)MPACK_MALLOC(capacity);
mpack_writer_init(writer, buffer, capacity);
mpack_writer_set_context(writer, growable_writer);
mpack_writer_set_flush(writer, mpack_growable_writer_flush);
mpack_writer_set_teardown(writer, mpack_growable_writer_teardown);
}
#endif
#if MPACK_STDIO
typedef struct mpack_file_writer_t {
FILE* file;
char buffer[MPACK_BUFFER_SIZE];
} mpack_file_writer_t;
static void mpack_file_writer_flush(mpack_writer_t* writer, const char* buffer, size_t count) {
mpack_file_writer_t* file_writer = (mpack_file_writer_t*)writer->context;
size_t written = fwrite((const void*)buffer, 1, count, file_writer->file);
if (written != count)
mpack_writer_flag_error(writer, mpack_error_io);
}
static void mpack_file_writer_teardown(mpack_writer_t* writer) {
mpack_file_writer_t* file_writer = (mpack_file_writer_t*)writer->context;
if (file_writer->file) {
int ret = fclose(file_writer->file);
file_writer->file = NULL;
if (ret != 0)
mpack_writer_flag_error(writer, mpack_error_io);
}
MPACK_FREE(file_writer);
}
void mpack_writer_init_file(mpack_writer_t* writer, const char* filename) {
mpack_file_writer_t* file_writer = (mpack_file_writer_t*) MPACK_MALLOC(sizeof(mpack_file_writer_t));
if (file_writer == NULL) {
mpack_writer_init_error(writer, mpack_error_memory);
return;
}
file_writer->file = fopen(filename, "wb");
if (file_writer->file == NULL) {
mpack_writer_init_error(writer, mpack_error_io);
MPACK_FREE(file_writer);
return;
}
mpack_writer_init(writer, file_writer->buffer, sizeof(file_writer->buffer));
mpack_writer_set_context(writer, file_writer);
mpack_writer_set_flush(writer, mpack_file_writer_flush);
mpack_writer_set_teardown(writer, mpack_file_writer_teardown);
}
#endif
void mpack_writer_flag_error(mpack_writer_t* writer, mpack_error_t error) {
mpack_log("writer %p setting error %i: %s\n", writer, (int)error, mpack_error_to_string(error));
if (writer->error == mpack_ok) {
writer->error = error;
if (writer->error_fn)
writer->error_fn(writer, writer->error);
}
}
static void mpack_write_native_big(mpack_writer_t* writer, const char* p, size_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_log("big write for %i bytes from %p, %i space left in buffer\n",
(int)count, p, (int)(writer->size - writer->used));
mpack_assert(count > writer->size - writer->used,
"big write requested for %i bytes, but there is %i available "
"space in buffer. call mpack_write_native() instead",
(int)count, (int)(writer->size - writer->used));
// we'll need a flush function
if (!writer->flush) {
mpack_writer_flag_error(writer, mpack_error_io);
return;
}
// we assume that the flush function is orders of magnitude slower
// than memcpy(), so we fill the buffer up first to try to flush as
// infrequently as possible.
// fill the remaining space in the buffer
size_t n = writer->size - writer->used;
if (count < n)
n = count;
mpack_memcpy(writer->buffer + writer->used, p, n);
writer->used += n;
p += n;
count -= n;
if (count == 0)
return;
// flush the buffer
size_t used = writer->used;
writer->used = 0;
writer->flush(writer, writer->buffer, used);
if (mpack_writer_error(writer) != mpack_ok)
return;
// note that an intrusive flush function (such as mpack_growable_writer_flush())
// may have changed size and/or reset used to a non-zero value. we treat both as
// though they may have changed, and there may still be data in the buffer.
// flush the extra data directly if it doesn't fit in the buffer
if (count > writer->size - writer->used) {
writer->flush(writer, p, count);
if (mpack_writer_error(writer) != mpack_ok)
return;
} else {
mpack_memcpy(writer->buffer + writer->used, p, count);
writer->used += count;
}
}
MPACK_STATIC_INLINE_SPEED void mpack_write_native(mpack_writer_t* writer, const char* p, size_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
if (writer->size - writer->used < count) {
mpack_write_native_big(writer, p, count);
} else {
mpack_memcpy(writer->buffer + writer->used, p, count);
writer->used += count;
}
}
MPACK_ALWAYS_INLINE void mpack_store_native_u8_at(char* p, uint8_t val) {
uint8_t* u = (uint8_t*)p;
u[0] = val;
}
MPACK_ALWAYS_INLINE void mpack_store_native_u16_at(char* p, uint16_t val) {
uint8_t* u = (uint8_t*)p;
u[0] = (uint8_t)((val >> 8) & 0xFF);
u[1] = (uint8_t)( val & 0xFF);
}
MPACK_ALWAYS_INLINE void mpack_store_native_u32_at(char* p, uint32_t val) {
uint8_t* u = (uint8_t*)p;
u[0] = (uint8_t)((val >> 24) & 0xFF);
u[1] = (uint8_t)((val >> 16) & 0xFF);
u[2] = (uint8_t)((val >> 8) & 0xFF);
u[3] = (uint8_t)( val & 0xFF);
}
MPACK_ALWAYS_INLINE void mpack_store_native_u64_at(char* p, uint64_t val) {
uint8_t* u = (uint8_t*)p;
u[0] = (uint8_t)((val >> 56) & 0xFF);
u[1] = (uint8_t)((val >> 48) & 0xFF);
u[2] = (uint8_t)((val >> 40) & 0xFF);
u[3] = (uint8_t)((val >> 32) & 0xFF);
u[4] = (uint8_t)((val >> 24) & 0xFF);
u[5] = (uint8_t)((val >> 16) & 0xFF);
u[6] = (uint8_t)((val >> 8) & 0xFF);
u[7] = (uint8_t)( val & 0xFF);
}
MPACK_STATIC_INLINE_SPEED void mpack_write_native_u8(mpack_writer_t* writer, uint8_t val) {
if (writer->size - writer->used >= sizeof(val)) {
mpack_store_native_u8_at(writer->buffer + writer->used, val);
writer->used += sizeof(val);
} else {
char c[sizeof(val)];
mpack_store_native_u8_at(c, val);
mpack_write_native_big(writer, c, sizeof(c));
}
}
MPACK_STATIC_INLINE_SPEED void mpack_write_native_u16(mpack_writer_t* writer, uint16_t val) {
if (writer->size - writer->used >= sizeof(val)) {
mpack_store_native_u16_at(writer->buffer + writer->used, val);
writer->used += sizeof(val);
} else {
char c[sizeof(val)];
mpack_store_native_u16_at(c, val);
mpack_write_native_big(writer, c, sizeof(c));
}
}
MPACK_STATIC_INLINE_SPEED void mpack_write_native_u32(mpack_writer_t* writer, uint32_t val) {
if (writer->size - writer->used >= sizeof(val)) {
mpack_store_native_u32_at(writer->buffer + writer->used, val);
writer->used += sizeof(val);
} else {
char c[sizeof(val)];
mpack_store_native_u32_at(c, val);
mpack_write_native_big(writer, c, sizeof(c));
}
}
MPACK_STATIC_INLINE_SPEED void mpack_write_native_u64(mpack_writer_t* writer, uint64_t val) {
if (writer->size - writer->used >= sizeof(val)) {
mpack_store_native_u64_at(writer->buffer + writer->used, val);
writer->used += sizeof(val);
} else {
char c[sizeof(val)];
mpack_store_native_u64_at(c, val);
mpack_write_native_big(writer, c, sizeof(c));
}
}
MPACK_STATIC_INLINE void mpack_write_native_i8 (mpack_writer_t* writer, int8_t val) {mpack_write_native_u8 (writer, (uint8_t )val);}
MPACK_STATIC_INLINE void mpack_write_native_i16 (mpack_writer_t* writer, int16_t val) {mpack_write_native_u16 (writer, (uint16_t)val);}
MPACK_STATIC_INLINE void mpack_write_native_i32 (mpack_writer_t* writer, int32_t val) {mpack_write_native_u32 (writer, (uint32_t)val);}
MPACK_STATIC_INLINE void mpack_write_native_i64 (mpack_writer_t* writer, int64_t val) {mpack_write_native_u64 (writer, (uint64_t)val);}
MPACK_STATIC_INLINE_SPEED void mpack_write_native_float(mpack_writer_t* writer, float value) {
union {
float f;
uint32_t i;
} u;
u.f = value;
mpack_write_native_u32(writer, u.i);
}
MPACK_STATIC_INLINE_SPEED void mpack_write_native_double(mpack_writer_t* writer, double value) {
union {
double d;
uint64_t i;
} u;
u.d = value;
mpack_write_native_u64(writer, u.i);
}
mpack_error_t mpack_writer_destroy(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_destroy(&writer->track, false));
// flush any outstanding data
if (mpack_writer_error(writer) == mpack_ok && writer->used != 0 && writer->flush != NULL) {
writer->flush(writer, writer->buffer, writer->used);
writer->flush = NULL;
}
if (writer->teardown) {
writer->teardown(writer);
writer->teardown = NULL;
}
return writer->error;
}
void mpack_writer_destroy_cancel(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_destroy(&writer->track, true));
if (writer->teardown)
writer->teardown(writer);
writer->teardown = NULL;
}
void mpack_write_tag(mpack_writer_t* writer, mpack_tag_t value) {
mpack_writer_track_element(writer);
switch (value.type) {
case mpack_type_nil: mpack_write_nil (writer); break;
case mpack_type_bool: mpack_write_bool (writer, value.v.b); break;
case mpack_type_float: mpack_write_float (writer, value.v.f); break;
case mpack_type_double: mpack_write_double(writer, value.v.d); break;
case mpack_type_int: mpack_write_int (writer, value.v.i); break;
case mpack_type_uint: mpack_write_uint (writer, value.v.u); break;
case mpack_type_str: mpack_start_str(writer, value.v.l); break;
case mpack_type_bin: mpack_start_bin(writer, value.v.l); break;
case mpack_type_ext: mpack_start_ext(writer, value.exttype, value.v.l); break;
case mpack_type_array: mpack_start_array(writer, value.v.n); break;
case mpack_type_map: mpack_start_map(writer, value.v.n); break;
default:
mpack_assert(0, "unrecognized type %i", (int)value.type);
break;
}
}
void mpack_write_u8(mpack_writer_t* writer, uint8_t value) {
mpack_writer_track_element(writer);
if (value <= 0x7f) {
mpack_write_native_u8(writer, (uint8_t)value);
} else {
mpack_write_native_u8(writer, 0xcc);
mpack_write_native_u8(writer, (uint8_t)value);
}
}
void mpack_write_u16(mpack_writer_t* writer, uint16_t value) {
mpack_writer_track_element(writer);
if (value <= 0x7f) {
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xcc);
mpack_write_native_u8(writer, (uint8_t)value);
} else {
mpack_write_native_u8(writer, 0xcd);
mpack_write_native_u16(writer, value);
}
}
void mpack_write_u32(mpack_writer_t* writer, uint32_t value) {
mpack_writer_track_element(writer);
if (value <= 0x7f) {
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xcc);
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xcd);
mpack_write_native_u16(writer, (uint16_t)value);
} else {
mpack_write_native_u8(writer, 0xce);
mpack_write_native_u32(writer, value);
}
}
void mpack_write_u64(mpack_writer_t* writer, uint64_t value) {
mpack_writer_track_element(writer);
if (value <= 0x7f) {
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xcc);
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xcd);
mpack_write_native_u16(writer, (uint16_t)value);
} else if (value <= UINT32_MAX) {
mpack_write_native_u8(writer, 0xce);
mpack_write_native_u32(writer, (uint32_t)value);
} else {
mpack_write_native_u8(writer, 0xcf);
mpack_write_native_u64(writer, value);
}
}
void mpack_write_i8(mpack_writer_t* writer, int8_t value) {
// write any non-negative number as a uint
if (value >= 0) {
mpack_write_u8(writer, (uint8_t)value);
return;
}
mpack_writer_track_element(writer);
if (value >= -32) {
mpack_write_native_i8(writer, (int8_t)0xe0 | (int8_t)value); // TODO: remove this (compatibility/1.1 difference?)
} else {
mpack_write_native_u8(writer, 0xd0);
mpack_write_native_i8(writer, value);
}
}
void mpack_write_i16(mpack_writer_t* writer, int16_t value) {
// write any non-negative number as a uint
if (value >= 0) {
mpack_write_u16(writer, (uint16_t)value);
return;
}
mpack_writer_track_element(writer);
if (value >= -32) {
mpack_write_native_i8(writer, (int8_t)0xe0 | (int8_t)value); // TODO: remove this (compatibility/1.1 difference?)
} else if (value >= INT8_MIN) {
mpack_write_native_u8(writer, 0xd0);
mpack_write_native_i8(writer, (int8_t)value);
} else {
mpack_write_native_u8(writer, 0xd1);
mpack_write_native_i16(writer, value);
}
}
void mpack_write_i32(mpack_writer_t* writer, int32_t value) {
// write any non-negative number as a uint
if (value >= 0) {
mpack_write_u32(writer, (uint32_t)value);
return;
}
mpack_writer_track_element(writer);
if (value >= -32) {
mpack_write_native_i8(writer, (int8_t)0xe0 | (int8_t)value); // TODO: remove this (compatibility/1.1 difference?)
} else if (value >= INT8_MIN) {
mpack_write_native_u8(writer, 0xd0);
mpack_write_native_i8(writer, (int8_t)value);
} else if (value >= INT16_MIN) {
mpack_write_native_u8(writer, 0xd1);
mpack_write_native_i16(writer, (int16_t)value);
} else {
mpack_write_native_u8(writer, 0xd2);
mpack_write_native_i32(writer, value);
}
}
void mpack_write_i64(mpack_writer_t* writer, int64_t value) {
// write any non-negative number as a uint
if (value >= 0) {
mpack_write_u64(writer, (uint64_t)value);
return;
}
mpack_writer_track_element(writer);
if (value >= -32) {
mpack_write_native_i8(writer, (int8_t)0xe0 | (int8_t)value); // TODO: remove this (compatibility/1.1 difference?)
} else if (value >= INT8_MIN) {
mpack_write_native_u8(writer, 0xd0);
mpack_write_native_i8(writer, (int8_t)value);
} else if (value >= INT16_MIN) {
mpack_write_native_u8(writer, 0xd1);
mpack_write_native_i16(writer, (int16_t)value);
} else if (value >= INT32_MIN) {
mpack_write_native_u8(writer, 0xd2);
mpack_write_native_i32(writer, (int32_t)value);
} else {
mpack_write_native_u8(writer, 0xd3);
mpack_write_native_i64(writer, value);
}
}
void mpack_write_bool(mpack_writer_t* writer, bool value) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, (uint8_t)(0xc2 | (value ? 1 : 0)));
}
void mpack_write_true(mpack_writer_t* writer) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, (uint8_t)0xc3);
}
void mpack_write_false(mpack_writer_t* writer) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, (uint8_t)0xc2);
}
void mpack_write_nil(mpack_writer_t* writer) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, 0xc0);
}
void mpack_write_float(mpack_writer_t* writer, float value) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, 0xca);
mpack_write_native_float(writer, value);
}
void mpack_write_double(mpack_writer_t* writer, double value) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, 0xcb);
mpack_write_native_double(writer, value);
}
#if MPACK_WRITE_TRACKING
void mpack_finish_array(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_array));
}
void mpack_finish_map(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_map));
}
void mpack_finish_str(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_str));
}
void mpack_finish_bin(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_bin));
}
void mpack_finish_ext(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_ext));
}
void mpack_finish_type(mpack_writer_t* writer, mpack_type_t type) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, type));
}
#endif
void mpack_start_array(mpack_writer_t* writer, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_writer_track_element(writer);
if (count <= 15) {
mpack_write_native_u8(writer, (uint8_t)(0x90 | count));
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xdc);
mpack_write_native_u16(writer, (uint16_t)count);
} else {
mpack_write_native_u8(writer, 0xdd);
mpack_write_native_u32(writer, count);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_array, count));
}
void mpack_start_map(mpack_writer_t* writer, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_writer_track_element(writer);
if (count <= 15) {
mpack_write_native_u8(writer, (uint8_t)(0x80 | count));
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xde);
mpack_write_native_u16(writer, (uint16_t)count);
} else {
mpack_write_native_u8(writer, 0xdf);
mpack_write_native_u32(writer, count);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_map, count));
}
void mpack_start_str(mpack_writer_t* writer, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_writer_track_element(writer);
if (count <= 31) {
mpack_write_native_u8(writer, (uint8_t)(0xa0 | count));
} else if (count <= UINT8_MAX) {
// TODO: THIS NOT AVAILABLE IN COMPATIBILITY MODE?? was not in 1.0?
mpack_write_native_u8(writer, 0xd9);
mpack_write_native_u8(writer, (uint8_t)count);
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xda);
mpack_write_native_u16(writer, (uint16_t)count);
} else {
mpack_write_native_u8(writer, 0xdb);
mpack_write_native_u32(writer, count);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_str, count));
}
void mpack_start_bin(mpack_writer_t* writer, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_writer_track_element(writer);
if (count <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xc4);
mpack_write_native_u8(writer, (uint8_t)count);
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xc5);
mpack_write_native_u16(writer, (uint16_t)count);
} else {
mpack_write_native_u8(writer, 0xc6);
mpack_write_native_u32(writer, count);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_bin, count));
}
void mpack_start_ext(mpack_writer_t* writer, int8_t exttype, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
// TODO: fail if compatibility mode
mpack_writer_track_element(writer);
if (count == 1) {
mpack_write_native_u8(writer, 0xd4);
mpack_write_native_i8(writer, exttype);
} else if (count == 2) {
mpack_write_native_u8(writer, 0xd5);
mpack_write_native_i8(writer, exttype);
} else if (count == 4) {
mpack_write_native_u8(writer, 0xd6);
mpack_write_native_i8(writer, exttype);
} else if (count == 8) {
mpack_write_native_u8(writer, 0xd7);
mpack_write_native_i8(writer, exttype);
} else if (count == 16) {
mpack_write_native_u8(writer, 0xd8);
mpack_write_native_i8(writer, exttype);
} else if (count <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xc7);
mpack_write_native_u8(writer, (uint8_t)count);
mpack_write_native_i8(writer, exttype);
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xc8);
mpack_write_native_u16(writer, (uint16_t)count);
mpack_write_native_i8(writer, exttype);
} else {
mpack_write_native_u8(writer, 0xc9);
mpack_write_native_u32(writer, count);
mpack_write_native_i8(writer, exttype);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_ext, count));
}
void mpack_write_str(mpack_writer_t* writer, const char* data, uint32_t count) {
mpack_start_str(writer, count);
mpack_write_bytes(writer, data, count);
mpack_finish_str(writer);
}
void mpack_write_bin(mpack_writer_t* writer, const char* data, uint32_t count) {
mpack_start_bin(writer, count);
mpack_write_bytes(writer, data, count);
mpack_finish_bin(writer);
}
void mpack_write_ext(mpack_writer_t* writer, int8_t exttype, const char* data, uint32_t count) {
mpack_start_ext(writer, exttype, count);
mpack_write_bytes(writer, data, count);
mpack_finish_ext(writer);
}
void mpack_write_bytes(mpack_writer_t* writer, const char* data, size_t count) {
MPACK_WRITER_TRACK(writer, mpack_track_bytes(&writer->track, false, count));
mpack_write_native(writer, data, count);
}
void mpack_write_cstr(mpack_writer_t* writer, const char* str) {
size_t len = mpack_strlen(str);
if (len > UINT32_MAX)
mpack_writer_flag_error(writer, mpack_error_invalid);
mpack_write_str(writer, str, (uint32_t)len);
}
#endif
/* mpack-reader.c */
#define MPACK_INTERNAL 1
/* #include "mpack-reader.h" */
#if MPACK_READER
void mpack_reader_init(mpack_reader_t* reader, char* buffer, size_t size, size_t count) {
mpack_memset(reader, 0, sizeof(*reader));
reader->buffer = buffer;
reader->size = size;
reader->left = count;
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_init(&reader->track)));
}
void mpack_reader_init_error(mpack_reader_t* reader, mpack_error_t error) {
mpack_memset(reader, 0, sizeof(*reader));
reader->error = error;
}
void mpack_reader_init_data(mpack_reader_t* reader, const char* data, size_t count) {
mpack_memset(reader, 0, sizeof(*reader));
reader->left = count;
// unfortunately we have to cast away the const to store the buffer,
// but we won't be modifying it because there's no fill function.
// the buffer size is left at 0 to ensure no fill function can be
// set or used (see mpack_reader_set_fill().)
#ifdef __cplusplus
reader->buffer = const_cast<char*>(data);
#else
reader->buffer = (char*)data;
#endif
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_init(&reader->track)));
}
#if MPACK_STDIO
typedef struct mpack_file_reader_t {
FILE* file;
char buffer[MPACK_BUFFER_SIZE];
} mpack_file_reader_t;
static size_t mpack_file_reader_fill(mpack_reader_t* reader, char* buffer, size_t count) {
mpack_file_reader_t* file_reader = (mpack_file_reader_t*)reader->context;
return fread((void*)buffer, 1, count, file_reader->file);
}
static void mpack_file_reader_teardown(mpack_reader_t* reader) {
mpack_file_reader_t* file_reader = (mpack_file_reader_t*)reader->context;
if (file_reader->file) {
int ret = fclose(file_reader->file);
file_reader->file = NULL;
if (ret != 0)
mpack_reader_flag_error(reader, mpack_error_io);
}
MPACK_FREE(file_reader);
}
void mpack_reader_init_file(mpack_reader_t* reader, const char* filename) {
mpack_file_reader_t* file_reader = (mpack_file_reader_t*) MPACK_MALLOC(sizeof(mpack_file_reader_t));
if (file_reader == NULL) {
mpack_reader_init_error(reader, mpack_error_memory);
return;
}
file_reader->file = fopen(filename, "rb");
if (file_reader->file == NULL) {
mpack_reader_init_error(reader, mpack_error_io);
MPACK_FREE(file_reader);
return;
}
mpack_reader_init(reader, file_reader->buffer, sizeof(file_reader->buffer), 0);
mpack_reader_set_context(reader, file_reader);
mpack_reader_set_fill(reader, mpack_file_reader_fill);
mpack_reader_set_teardown(reader, mpack_file_reader_teardown);
}
#endif
mpack_error_t mpack_reader_destroy_impl(mpack_reader_t* reader, bool cancel) {
MPACK_UNUSED(cancel);
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_destroy(&reader->track, cancel)));
if (reader->teardown)
reader->teardown(reader);
reader->teardown = NULL;
return reader->error;
}
void mpack_reader_destroy_cancel(mpack_reader_t* reader) {
mpack_reader_destroy_impl(reader, true);
}
mpack_error_t mpack_reader_destroy(mpack_reader_t* reader) {
return mpack_reader_destroy_impl(reader, false);
}
size_t mpack_reader_remaining(mpack_reader_t* reader, const char** data) {
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_check_empty(&reader->track)));
if (data)
*data = reader->buffer + reader->pos;
return reader->left;
}
void mpack_reader_flag_error(mpack_reader_t* reader, mpack_error_t error) {
mpack_log("reader %p setting error %i: %s\n", reader, (int)error, mpack_error_to_string(error));
if (reader->error == mpack_ok) {
reader->error = error;
if (reader->error_fn)
reader->error_fn(reader, error);
}
}
// A helper to call the reader fill function. This makes sure it's
// implemented and guards against overflow in case it returns -1.
MPACK_STATIC_INLINE_SPEED size_t mpack_fill(mpack_reader_t* reader, char* p, size_t count) {
if (!reader->fill)
return 0;
size_t ret = reader->fill(reader, p, count);
if (ret == ((size_t)(-1)))
return 0;
return ret;
}
// Reads count bytes into p. Used when there are not enough bytes
// left in the buffer to satisfy a read.
void mpack_read_native_big(mpack_reader_t* reader, char* p, size_t count) {
if (mpack_reader_error(reader) != mpack_ok) {
mpack_memset(p, 0, count);
return;
}
mpack_log("big read for %i bytes into %p, %i left in buffer, buffer size %i\n",
(int)count, p, (int)reader->left, (int)reader->size);
if (count <= reader->left) {
mpack_assert(0,
"big read requested for %i bytes, but there are %i bytes "
"left in buffer. call mpack_read_native() instead",
(int)count, (int)reader->left);
mpack_reader_flag_error(reader, mpack_error_bug);
mpack_memset(p, 0, count);
return;
}
if (reader->size == 0) {
// somewhat debatable what error should be returned here. when
// initializing a reader with an in-memory buffer it's not
// necessarily a bug if the data is blank; it might just have
// been truncated to zero. for this reason we return the same
// error as if the data was truncated.
mpack_reader_flag_error(reader, mpack_error_io);
mpack_memset(p, 0, count);
return;
}
// flush what's left of the buffer
if (reader->left > 0) {
mpack_log("flushing %i bytes remaining in buffer\n", (int)reader->left);
mpack_memcpy(p, reader->buffer + reader->pos, reader->left);
count -= reader->left;
p += reader->left;
reader->pos += reader->left;
reader->left = 0;
}
// we read only in multiples of the buffer size. read the middle portion, if any
size_t middle = count - (count % reader->size);
if (middle > 0) {
mpack_log("reading %i bytes in middle\n", (int)middle);
if (mpack_fill(reader, p, middle) < middle) {
mpack_reader_flag_error(reader, mpack_error_io);
mpack_memset(p, 0, count);
return;
}
count -= middle;
p += middle;
if (count == 0)
return;
}
// fill the buffer
reader->pos = 0;
reader->left = mpack_fill(reader, reader->buffer, reader->size);
mpack_log("filled %i bytes into buffer\n", (int)reader->left);
if (reader->left < count) {
mpack_reader_flag_error(reader, mpack_error_io);
mpack_memset(p, 0, count);
return;
}
// serve the remainder
mpack_log("serving %i remaining bytes from %p to %p\n", (int)count, reader->buffer+reader->pos,p);
mpack_memcpy(p, reader->buffer + reader->pos, count);
reader->pos += count;
reader->left -= count;
}
void mpack_skip_bytes(mpack_reader_t* reader, size_t count) {
// TODO: This is currently very slow, potentially even slower than just
// reading the data. Skip needs to be implemented properly.
char c[128];
size_t i = 0;
while (i < count && mpack_reader_error(reader) == mpack_ok) {
size_t amount = ((count - i) > sizeof(c)) ? sizeof(c) : (count - i);
mpack_read_bytes(reader, c, amount);
i += amount;
}
}
void mpack_read_bytes(mpack_reader_t* reader, char* p, size_t count) {
mpack_reader_track_bytes(reader, count);
mpack_read_native(reader, p, count);
}
// internal inplace reader for when it straddles the end of the buffer
// this is split out to inline the common case, although this isn't done
// right now because we can't inline tracking yet
static const char* mpack_read_bytes_inplace_big(mpack_reader_t* reader, size_t count) {
// we should only arrive here from inplace straddle; this should already be checked
mpack_assert(mpack_reader_error(reader) == mpack_ok, "already in error state? %s",
mpack_error_to_string(mpack_reader_error(reader)));
mpack_assert(reader->left < count, "already enough bytes in buffer: %i left, %i count", (int)reader->left, (int)count);
// we'll need a fill function to get more data
if (!reader->fill) {
mpack_reader_flag_error(reader, mpack_error_io);
return NULL;
}
// make sure the buffer is big enough to actually fit the data
if (count > reader->size) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return NULL;
}
// shift the remaining data back to the start and fill the buffer back up
mpack_memmove(reader->buffer, reader->buffer + reader->pos, reader->left);
reader->pos = 0;
reader->left += mpack_fill(reader, reader->buffer + reader->left, reader->size - reader->left);
if (reader->left < count) {
mpack_reader_flag_error(reader, mpack_error_io);
return NULL;
}
reader->pos += count;
reader->left -= count;
return reader->buffer;
}
const char* mpack_read_bytes_inplace(mpack_reader_t* reader, size_t count) {
if (mpack_reader_error(reader) != mpack_ok)
return NULL;
mpack_reader_track_bytes(reader, count);
// if we have enough bytes already in the buffer, we can return it directly.
if (reader->left >= count) {
reader->pos += count;
reader->left -= count;
return reader->buffer + reader->pos - count;
}
return mpack_read_bytes_inplace_big(reader, count);
}
mpack_tag_t mpack_read_tag(mpack_reader_t* reader) {
mpack_tag_t var = mpack_tag_nil();
// get the type
uint8_t type = mpack_read_native_u8(reader);
if (mpack_reader_error(reader))
return mpack_tag_nil();
if (mpack_reader_track_element(reader) != mpack_ok)
return mpack_tag_nil();
// unfortunately, by far the fastest way to parse a tag is to switch
// on the first byte, and to explicitly list every possible byte. so for
// infix types, the list of cases is quite large. the compiler optimizes
// this nicely (and it takes very little space.)
switch (type) {
// positive fixnum
case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07:
case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f:
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f:
case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57:
case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f:
case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67:
case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f:
case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77:
case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f:
var.type = mpack_type_uint;
var.v.u = type;
return var;
// negative fixnum
case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7:
case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef:
case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7:
case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff:
var.type = mpack_type_int;
var.v.i = (int8_t)type;
return var;
// fixmap
case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f:
var.type = mpack_type_map;
var.v.n = type & ~0xf0;
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_map, var.v.n)) != mpack_ok)
return mpack_tag_nil();
return var;
// fixarray
case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f:
var.type = mpack_type_array;
var.v.n = type & ~0xf0;
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_array, var.v.n)) != mpack_ok)
return mpack_tag_nil();
return var;
// fixstr
case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf:
case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf:
var.type = mpack_type_str;
var.v.l = type & ~0xe0;
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_str, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// nil
case 0xc0:
return mpack_tag_nil();
// bool
case 0xc2: case 0xc3:
var.type = mpack_type_bool;
var.v.b = type & 1;
return var;
// bin8
case 0xc4:
var.type = mpack_type_bin;
var.v.l = mpack_read_native_u8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_bin, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// bin16
case 0xc5:
var.type = mpack_type_bin;
var.v.l = mpack_read_native_u16(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_bin, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// bin32
case 0xc6:
var.type = mpack_type_bin;
var.v.l = mpack_read_native_u32(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_bin, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// ext8
case 0xc7:
var.type = mpack_type_ext;
var.v.l = mpack_read_native_u8(reader);
var.exttype = mpack_read_native_i8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// ext16
case 0xc8:
var.type = mpack_type_ext;
var.v.l = mpack_read_native_u16(reader);
var.exttype = mpack_read_native_i8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// ext32
case 0xc9:
var.type = mpack_type_ext;
var.v.l = mpack_read_native_u32(reader);
var.exttype = mpack_read_native_i8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// float
case 0xca:
var.type = mpack_type_float;
var.v.f = mpack_read_native_float(reader);
return var;
// double
case 0xcb:
var.type = mpack_type_double;
var.v.d = mpack_read_native_double(reader);
return var;
// uint8
case 0xcc:
var.type = mpack_type_uint;
var.v.u = mpack_read_native_u8(reader);
return var;
// uint16
case 0xcd:
var.type = mpack_type_uint;
var.v.u = mpack_read_native_u16(reader);
return var;
// uint32
case 0xce:
var.type = mpack_type_uint;
var.v.u = mpack_read_native_u32(reader);
return var;
// uint64
case 0xcf:
var.type = mpack_type_uint;
var.v.u = mpack_read_native_u64(reader);
return var;
// int8
case 0xd0:
var.type = mpack_type_int;
var.v.i = mpack_read_native_i8(reader);
return var;
// int16
case 0xd1:
var.type = mpack_type_int;
var.v.i = mpack_read_native_i16(reader);
return var;
// int32
case 0xd2:
var.type = mpack_type_int;
var.v.i = mpack_read_native_i32(reader);
return var;
// int64
case 0xd3:
var.type = mpack_type_int;
var.v.i = mpack_read_native_i64(reader);
return var;
// fixext1
case 0xd4:
var.type = mpack_type_ext;
var.v.l = 1;
var.exttype = mpack_read_native_i8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// fixext2
case 0xd5:
var.type = mpack_type_ext;
var.v.l = 2;
var.exttype = mpack_read_native_i8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// fixext4
case 0xd6:
var.type = mpack_type_ext;
var.v.l = 4;
var.exttype = mpack_read_native_i8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// fixext8
case 0xd7:
var.type = mpack_type_ext;
var.v.l = 8;
var.exttype = mpack_read_native_i8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// fixext16
case 0xd8:
var.type = mpack_type_ext;
var.v.l = 16;
var.exttype = mpack_read_native_i8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// str8
case 0xd9:
var.type = mpack_type_str;
var.v.l = mpack_read_native_u8(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_str, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// str16
case 0xda:
var.type = mpack_type_str;
var.v.l = mpack_read_native_u16(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_str, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// str32
case 0xdb:
var.type = mpack_type_str;
var.v.l = mpack_read_native_u32(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_str, var.v.l)) != mpack_ok)
return mpack_tag_nil();
return var;
// array16
case 0xdc:
var.type = mpack_type_array;
var.v.n = mpack_read_native_u16(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_array, var.v.n)) != mpack_ok)
return mpack_tag_nil();
return var;
// array32
case 0xdd:
var.type = mpack_type_array;
var.v.n = mpack_read_native_u32(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_array, var.v.n)) != mpack_ok)
return mpack_tag_nil();
return var;
// map16
case 0xde:
var.type = mpack_type_map;
var.v.n = mpack_read_native_u16(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_map, var.v.n)) != mpack_ok)
return mpack_tag_nil();
return var;
// map32
case 0xdf:
var.type = mpack_type_map;
var.v.n = mpack_read_native_u32(reader);
if (MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_map, var.v.n)) != mpack_ok)
return mpack_tag_nil();
return var;
// reserved
case 0xc1:
break;
}
// unrecognized type
mpack_reader_flag_error(reader, mpack_error_invalid);
return mpack_tag_nil();
}
void mpack_discard(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (mpack_reader_error(reader))
return;
switch (var.type) {
case mpack_type_str:
mpack_skip_bytes(reader, var.v.l);
mpack_done_str(reader);
break;
case mpack_type_bin:
mpack_skip_bytes(reader, var.v.l);
mpack_done_bin(reader);
break;
case mpack_type_ext:
mpack_skip_bytes(reader, var.v.l);
mpack_done_ext(reader);
break;
case mpack_type_array: {
for (; var.v.n > 0; --var.v.n) {
mpack_discard(reader);
if (mpack_reader_error(reader))
break;
}
break;
}
case mpack_type_map: {
for (; var.v.n > 0; --var.v.n) {
mpack_discard(reader);
mpack_discard(reader);
if (mpack_reader_error(reader))
break;
}
break;
}
default:
break;
}
}
#if MPACK_READ_TRACKING
void mpack_done_array(mpack_reader_t* reader) {
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_array)));
}
void mpack_done_map(mpack_reader_t* reader) {
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_map)));
}
void mpack_done_str(mpack_reader_t* reader) {
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_str)));
}
void mpack_done_bin(mpack_reader_t* reader) {
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_bin)));
}
void mpack_done_ext(mpack_reader_t* reader) {
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_ext)));
}
void mpack_done_type(mpack_reader_t* reader, mpack_type_t type) {
MPACK_UNUSED(MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, type)));
}
#endif
#if MPACK_DEBUG && MPACK_STDIO && !MPACK_NO_PRINT
static void mpack_debug_print_element(mpack_reader_t* reader, size_t depth) {
mpack_tag_t val = mpack_read_tag(reader);
if (mpack_reader_error(reader) != mpack_ok)
return;
switch (val.type) {
case mpack_type_nil:
printf("null");
break;
case mpack_type_bool:
printf(val.v.b ? "true" : "false");
break;
case mpack_type_float:
printf("%f", val.v.f);
break;
case mpack_type_double:
printf("%f", val.v.d);
break;
case mpack_type_int:
printf("%" PRIi64, val.v.i);
break;
case mpack_type_uint:
printf("%" PRIu64, val.v.u);
break;
case mpack_type_bin:
// skip data
for (size_t i = 0; i < val.v.l; ++i)
mpack_read_native_u8(reader);
if (mpack_reader_error(reader) != mpack_ok)
return;
printf("<binary data>");
mpack_done_bin(reader);
break;
case mpack_type_ext:
// skip data
for (size_t i = 0; i < val.v.l; ++i)
mpack_read_native_u8(reader);
if (mpack_reader_error(reader) != mpack_ok)
return;
printf("<ext data of type %i>", val.exttype);
mpack_done_ext(reader);
break;
case mpack_type_str:
putchar('"');
for (size_t i = 0; i < val.v.l; ++i) {
char c;
mpack_read_bytes(reader, &c, 1);
if (mpack_reader_error(reader) != mpack_ok)
return;
switch (c) {
case '\n': printf("\\n"); break;
case '\\': printf("\\\\"); break;
case '"': printf("\\\""); break;
default: putchar(c); break;
}
}
putchar('"');
mpack_done_str(reader);
break;
case mpack_type_array:
printf("[\n");
for (size_t i = 0; i < val.v.n; ++i) {
if (mpack_reader_error(reader) != mpack_ok)
return;
for (size_t j = 0; j < depth + 1; ++j)
printf(" ");
mpack_debug_print_element(reader, depth + 1);
if (mpack_reader_error(reader) != mpack_ok)
return;
if (i != val.v.n - 1)
putchar(',');
putchar('\n');
}
for (size_t i = 0; i < depth; ++i)
printf(" ");
putchar(']');
mpack_done_array(reader);
break;
case mpack_type_map:
printf("{\n");
for (size_t i = 0; i < val.v.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
printf(" ");
mpack_debug_print_element(reader, depth + 1);
if (mpack_reader_error(reader) != mpack_ok)
return;
printf(": ");
mpack_debug_print_element(reader, depth + 1);
if (mpack_reader_error(reader) != mpack_ok)
return;
if (i != val.v.n - 1)
putchar(',');
putchar('\n');
}
for (size_t i = 0; i < depth; ++i)
printf(" ");
putchar('}');
mpack_done_map(reader);
break;
}
}
void mpack_debug_print(const char* data, int len) {
mpack_reader_t reader;
mpack_reader_init_data(&reader, data, len);
int depth = 2;
for (int i = 0; i < depth; ++i)
printf(" ");
mpack_debug_print_element(&reader, depth);
putchar('\n');
if (mpack_reader_error(&reader) != mpack_ok)
printf("<mpack parsing error %s>\n", mpack_error_to_string(mpack_reader_error(&reader)));
else if (mpack_reader_remaining(&reader, NULL) > 0)
printf("<%i extra bytes at end of mpack>\n", (int)mpack_reader_remaining(&reader, NULL));
}
#endif
#endif
/* mpack-expect.c */
#define MPACK_INTERNAL 1
/* #include "mpack-expect.h" */
#if MPACK_EXPECT
// Basic Number Functions
uint8_t mpack_expect_u8(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT8_MAX)
return (uint8_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT8_MAX)
return (uint8_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint16_t mpack_expect_u16(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT16_MAX)
return (uint16_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT16_MAX)
return (uint16_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint32_t mpack_expect_u32(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT32_MAX)
return (uint32_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT32_MAX)
return (uint32_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint64_t mpack_expect_u64(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
return var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0)
return (uint64_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int8_t mpack_expect_i8(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT8_MAX)
return (int8_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT8_MIN && var.v.i <= INT8_MAX)
return (int8_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int16_t mpack_expect_i16(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT16_MAX)
return (int16_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT16_MIN && var.v.i <= INT16_MAX)
return (int16_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int32_t mpack_expect_i32(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT32_MAX)
return (int32_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT32_MIN && var.v.i <= INT32_MAX)
return (int32_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int64_t mpack_expect_i64(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT64_MAX)
return (int64_t)var.v.u;
} else if (var.type == mpack_type_int) {
return var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
float mpack_expect_float(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint)
return (float)var.v.u;
else if (var.type == mpack_type_int)
return (float)var.v.i;
else if (var.type == mpack_type_float)
return var.v.f;
else if (var.type == mpack_type_double)
return (float)var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0f;
}
double mpack_expect_double(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint)
return (double)var.v.u;
else if (var.type == mpack_type_int)
return (double)var.v.i;
else if (var.type == mpack_type_float)
return (double)var.v.f;
else if (var.type == mpack_type_double)
return var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0;
}
float mpack_expect_float_strict(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_float)
return var.v.f;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0f;
}
double mpack_expect_double_strict(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_float)
return (double)var.v.f;
else if (var.type == mpack_type_double)
return var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0;
}
// Ranged Number Functions
int8_t mpack_expect_i8_range(mpack_reader_t* reader, int8_t min_value, int8_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %i must be less than or equal to max_value %i",
min_value, max_value);
// read the value
int8_t val = mpack_expect_i8(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
// TODO: missing i16_range, i32_range, i64_range?
uint8_t mpack_expect_u8_range(mpack_reader_t* reader, uint8_t min_value, uint8_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %u must be less than or equal to max_value %u",
min_value, max_value);
// read the value
uint8_t val = mpack_expect_u8(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
uint16_t mpack_expect_u16_range(mpack_reader_t* reader, uint16_t min_value, uint16_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %u must be less than or equal to max_value %u",
min_value, max_value);
// read the value
uint16_t val = mpack_expect_u16(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
uint32_t mpack_expect_u32_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %u must be less than or equal to max_value %u",
min_value, max_value);
// read the value
uint32_t val = mpack_expect_u32(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
uint64_t mpack_expect_u64_range(mpack_reader_t* reader, uint64_t min_value, uint64_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value,
"min_value %" PRIu64 " must be less than or equal to max_value %" PRIu64, min_value, max_value);
// read the value
uint64_t val = mpack_expect_u64(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
float mpack_expect_float_range(mpack_reader_t* reader, float min_value, float max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %f must be less than or equal to max_value %f",
min_value, max_value);
// read the value
float val = mpack_expect_float(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
double mpack_expect_double_range(mpack_reader_t* reader, double min_value, double max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %f must be less than or equal to max_value %f",
min_value, max_value);
// read the value
double val = mpack_expect_double(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
// Matching Number Functions
void mpack_expect_uint_match(mpack_reader_t* reader, uint64_t value) {
if (mpack_expect_u64(reader) != value)
mpack_reader_flag_error(reader, mpack_error_type);
}
void mpack_expect_int_match(mpack_reader_t* reader, int64_t value) {
if (mpack_expect_i64(reader) != value)
mpack_reader_flag_error(reader, mpack_error_type);
}
// Other Basic Types
void mpack_expect_nil(mpack_reader_t* reader) {
mpack_reader_track_element(reader);
uint8_t type = mpack_read_native_u8(reader);
if (reader->error != mpack_ok)
return;
if (type != 0xc0)
mpack_reader_flag_error(reader, mpack_error_type);
}
bool mpack_expect_bool(mpack_reader_t* reader) {
mpack_reader_track_element(reader);
uint8_t type = mpack_read_native_u8(reader);
if (reader->error != mpack_ok)
return false;
if ((type & ~1) != 0xc2)
mpack_reader_flag_error(reader, mpack_error_type);
return (bool)(type & 1);
}
void mpack_expect_true(mpack_reader_t* reader) {
if (mpack_expect_bool(reader) != true)
mpack_reader_flag_error(reader, mpack_error_type);
}
void mpack_expect_false(mpack_reader_t* reader) {
if (mpack_expect_bool(reader) != false)
mpack_reader_flag_error(reader, mpack_error_type);
}
// Compound Types
uint32_t mpack_expect_map(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_map)
return var.v.n;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
void mpack_expect_map_match(mpack_reader_t* reader, uint32_t count) {
if (mpack_expect_map(reader) != count)
mpack_reader_flag_error(reader, mpack_error_type);
}
bool mpack_expect_map_or_nil(mpack_reader_t* reader, uint32_t* count) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_nil) {
*count = 0;
return false;
}
if (var.type == mpack_type_map) {
*count = var.v.n;
return true;
}
mpack_reader_flag_error(reader, mpack_error_type);
*count = 0;
return false;
}
uint32_t mpack_expect_array(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_array)
return var.v.n;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
void mpack_expect_array_match(mpack_reader_t* reader, uint32_t count) {
if (mpack_expect_array(reader) != count)
mpack_reader_flag_error(reader, mpack_error_type);
}
uint32_t mpack_expect_array_range(mpack_reader_t* reader, uint32_t min_count, uint32_t max_count) {
// make sure the range is sensible
mpack_assert(min_count <= max_count, "min_count %u must be less than or equal to max_count %u",
min_count, max_count);
// read the count
uint32_t count = mpack_expect_array(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_count;
// make sure it fits
if (count < min_count || count > max_count) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_count;
}
return count;
}
#ifdef MPACK_MALLOC
void* mpack_expect_array_alloc_impl(mpack_reader_t* reader, size_t element_size, uint32_t max_count, size_t* out_count) {
size_t count = *out_count = mpack_expect_array(reader);
if (mpack_reader_error(reader))
return NULL;
if (count > max_count) {
mpack_reader_flag_error(reader, mpack_error_type);
return NULL;
}
void* p = MPACK_MALLOC(element_size * count);
if (p == NULL)
mpack_reader_flag_error(reader, mpack_error_memory);
return p;
}
#endif
// String Functions
uint32_t mpack_expect_str(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_str)
return var.v.l;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
size_t mpack_expect_str_buf(mpack_reader_t* reader, char* buf, size_t bufsize) {
size_t strsize = mpack_expect_str(reader);
if (mpack_reader_error(reader))
return 0;
if (strsize > bufsize) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return 0;
}
mpack_read_bytes(reader, buf, strsize);
if (mpack_reader_error(reader))
return 0;
mpack_done_str(reader);
return strsize;
}
// Binary Blob Functions
uint32_t mpack_expect_bin(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_bin)
return var.v.l;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
size_t mpack_expect_bin_buf(mpack_reader_t* reader, char* buf, size_t bufsize) {
size_t binsize = mpack_expect_bin(reader);
if (mpack_reader_error(reader))
return 0;
if (binsize > bufsize) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return 0;
}
mpack_read_bytes(reader, buf, binsize);
if (mpack_reader_error(reader))
return 0;
mpack_done_bin(reader);
return binsize;
}
void mpack_expect_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) {
// make sure buffer makes sense
mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator");
// expect a str
size_t rawsize = mpack_expect_str_buf(reader, buf, bufsize - 1);
if (mpack_reader_error(reader)) {
buf[0] = 0;
return;
}
buf[rawsize] = 0;
// check it for null bytes
for (size_t i = 0; i < rawsize; ++i) {
if (buf[i] == 0) {
buf[0] = 0;
mpack_reader_flag_error(reader, mpack_error_type);
return;
}
}
}
void mpack_expect_utf8_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) {
// make sure buffer makes sense
mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator");
// expect a raw
size_t rawsize = mpack_expect_str_buf(reader, buf, bufsize - 1);
if (mpack_reader_error(reader)) {
buf[0] = 0;
return;
}
buf[rawsize] = 0;
// check encoding
uint32_t state = 0;
uint32_t codepoint = 0;
for (size_t i = 0; i < rawsize; ++i) {
if (mpack_utf8_decode(&state, &codepoint, buf[i]) == MPACK_UTF8_REJECT) {
buf[0] = 0;
mpack_reader_flag_error(reader, mpack_error_type);
return;
}
}
}
#ifdef MPACK_MALLOC
char* mpack_expect_cstr_alloc(mpack_reader_t* reader, size_t maxsize) {
// make sure argument makes sense
if (maxsize < 1) {
mpack_break("maxsize is zero; you must have room for at least a null-terminator");
mpack_reader_flag_error(reader, mpack_error_bug);
return NULL;
}
// read size
size_t length = mpack_expect_str(reader); // TODO: use expect str max? create expect str max...
if (mpack_reader_error(reader))
return NULL;
if (length > (maxsize - 1)) {
mpack_reader_flag_error(reader, mpack_error_type);
return NULL;
}
// allocate
char* str = (char*)MPACK_MALLOC(length + 1);
if (str == NULL) {
mpack_reader_flag_error(reader, mpack_error_memory);
return NULL;
}
// read with jump disabled so we don't leak our buffer
mpack_reader_track_bytes(reader, length);
mpack_read_native_nojump(reader, str, length);
if (mpack_reader_error(reader)) {
MPACK_FREE(str);
reader->error_fn(reader, mpack_reader_error(reader));
return NULL;
}
str[length] = 0;
mpack_done_str(reader);
return str;
}
#endif
void mpack_expect_cstr_match(mpack_reader_t* reader, const char* str) {
if (reader->error != mpack_ok)
return;
// expect a str the correct length
size_t len = mpack_strlen(str);
if (len > UINT32_MAX)
mpack_reader_flag_error(reader, mpack_error_invalid);
mpack_expect_str_length(reader, (uint32_t)len);
if (mpack_reader_error(reader))
return;
// check each byte
for (size_t i = 0; i < len; ++i) {
mpack_reader_track_bytes(reader, 1);
if (mpack_read_native_u8(reader) != *str++) {
mpack_reader_flag_error(reader, mpack_error_type);
return;
}
}
mpack_done_str(reader);
}
#endif
/* mpack-node.c */
#define MPACK_INTERNAL 1
/* #include "mpack-node.h" */
#if MPACK_NODE
/*
* Tree Parsing
*/
typedef struct mpack_level_t {
mpack_node_data_t* child;
size_t left; // children left in level
} mpack_level_t;
typedef struct mpack_tree_parser_t {
mpack_tree_t* tree;
const char* data;
size_t left; // bytes left in data
size_t possible_nodes_left;
size_t level;
size_t depth;
mpack_level_t* stack;
bool stack_allocated;
} mpack_tree_parser_t;
MPACK_STATIC_INLINE_SPEED uint8_t mpack_tree_u8(mpack_tree_parser_t* parser) {
if (parser->possible_nodes_left < sizeof(uint8_t)) {
mpack_tree_flag_error(parser->tree, mpack_error_io);
return 0;
}
uint8_t val = mpack_load_native_u8(parser->data);
parser->data += sizeof(uint8_t);
parser->left -= sizeof(uint8_t);
parser->possible_nodes_left -= sizeof(uint8_t);
return val;
}
MPACK_STATIC_INLINE_SPEED uint16_t mpack_tree_u16(mpack_tree_parser_t* parser) {
if (parser->possible_nodes_left < sizeof(uint16_t)) {
mpack_tree_flag_error(parser->tree, mpack_error_io);
return 0;
}
uint16_t val = mpack_load_native_u16(parser->data);
parser->data += sizeof(uint16_t);
parser->left -= sizeof(uint16_t);
parser->possible_nodes_left -= sizeof(uint16_t);
return val;
}
MPACK_STATIC_INLINE_SPEED uint32_t mpack_tree_u32(mpack_tree_parser_t* parser) {
if (parser->possible_nodes_left < sizeof(uint32_t)) {
mpack_tree_flag_error(parser->tree, mpack_error_io);
return 0;
}
uint32_t val = mpack_load_native_u32(parser->data);
parser->data += sizeof(uint32_t);
parser->left -= sizeof(uint32_t);
parser->possible_nodes_left -= sizeof(uint32_t);
return val;
}
MPACK_STATIC_INLINE_SPEED uint64_t mpack_tree_u64(mpack_tree_parser_t* parser) {
if (parser->possible_nodes_left < sizeof(uint64_t)) {
mpack_tree_flag_error(parser->tree, mpack_error_io);
return 0;
}
uint64_t val = mpack_load_native_u64(parser->data);
parser->data += sizeof(uint64_t);
parser->left -= sizeof(uint64_t);
parser->possible_nodes_left -= sizeof(uint64_t);
return val;
}
MPACK_STATIC_INLINE int8_t mpack_tree_i8 (mpack_tree_parser_t* parser) {return (int8_t) mpack_tree_u8(parser); }
MPACK_STATIC_INLINE int16_t mpack_tree_i16(mpack_tree_parser_t* parser) {return (int16_t)mpack_tree_u16(parser);}
MPACK_STATIC_INLINE int32_t mpack_tree_i32(mpack_tree_parser_t* parser) {return (int32_t)mpack_tree_u32(parser);}
MPACK_STATIC_INLINE int64_t mpack_tree_i64(mpack_tree_parser_t* parser) {return (int64_t)mpack_tree_u64(parser);}
MPACK_STATIC_INLINE_SPEED float mpack_tree_float(mpack_tree_parser_t* parser) {
union {
float f;
uint32_t i;
} u;
u.i = mpack_tree_u32(parser);
return u.f;
}
MPACK_STATIC_INLINE_SPEED double mpack_tree_double(mpack_tree_parser_t* parser) {
union {
double d;
uint64_t i;
} u;
u.i = mpack_tree_u64(parser);
return u.d;
}
void mpack_tree_parse_children(mpack_tree_parser_t* parser, mpack_node_data_t* node) {
mpack_type_t type = node->type;
size_t total = node->value.content.n;
// Make sure we have enough room in the stack
if (parser->level + 1 == parser->depth) {
#ifdef MPACK_MALLOC
size_t new_depth = parser->depth * 2;
mpack_log("growing stack to depth %i\n", (int)new_depth);
// Replace the stack-allocated parsing stack
if (parser->stack_allocated) {
mpack_level_t* new_stack = (mpack_level_t*)MPACK_MALLOC(sizeof(mpack_level_t) * new_depth);
if (!new_stack) {
mpack_tree_flag_error(parser->tree, mpack_error_memory);
parser->level = 0;
return;
}
memcpy(new_stack, parser->stack, sizeof(mpack_level_t) * parser->depth);
parser->stack = new_stack;
parser->stack_allocated = false;
// Realloc the allocated parsing stack
} else {
parser->stack = (mpack_level_t*)mpack_realloc(parser->stack, sizeof(mpack_level_t) * parser->depth, sizeof(mpack_level_t) * new_depth);
if (!parser->stack) {
mpack_tree_flag_error(parser->tree, mpack_error_memory);
parser->level = 0;
return;
}
}
parser->depth = new_depth;
#else
mpack_tree_flag_error(parser->tree, mpack_error_too_big);
parser->level = 0;
return;
#endif
}
// Calculate total elements to read
if (type == mpack_type_map) {
if ((uint64_t)total * 2 > (uint64_t)SIZE_MAX) {
mpack_tree_flag_error(parser->tree, mpack_error_too_big);
parser->level = 0;
return;
}
total *= 2;
}
// Each node is at least one byte. Count these bytes now to make
// sure there is enough data left.
if (total > parser->possible_nodes_left) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
parser->possible_nodes_left -= total;
// If there are enough nodes left in the current page, no need to grow
if (total <= parser->tree->page.left) {
node->value.content.children = parser->tree->page.nodes + parser->tree->page.pos;
parser->tree->page.pos += total;
parser->tree->page.left -= total;
} else {
#ifdef MPACK_MALLOC
// We can't grow if we're using a fixed pool
if (!parser->tree->owned) {
mpack_tree_flag_error(parser->tree, mpack_error_too_big);
parser->level = 0;
return;
}
// Otherwise we need to grow, and the node's children need to be contiguous.
// This is a heuristic to decide whether we should waste the remaining space
// in the current page and start a new one, or give the children their
// own page. With a fraction of 1/8, this causes at most 12% additional
// waste. Note that reducing this too much causes less cache coherence and
// more malloc() overhead due to smaller allocations, so there's a tradeoff
// here. This heuristic could use some improvement, especially with custom
// page sizes.
// Allocate the new link first. The two cases below put it into the list before trying
// to allocate its nodes so it gets freed later in case of allocation failure.
mpack_tree_link_t* link = (mpack_tree_link_t*)MPACK_MALLOC(sizeof(mpack_tree_link_t));
if (link == NULL) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
if (total > MPACK_NODE_PAGE_SIZE || parser->tree->page.left > MPACK_NODE_PAGE_SIZE / 8) {
mpack_log("allocating seperate page for %i children, %i left in page of size %i\n",
(int)total, (int)parser->tree->page.left, (int)MPACK_NODE_PAGE_SIZE);
// Allocate only this node's children and insert it after the current page
link->next = parser->tree->page.next;
parser->tree->page.next = link;
link->nodes = (mpack_node_data_t*)MPACK_MALLOC(sizeof(mpack_node_data_t) * total);
if (link->nodes == NULL) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
// Use the new page for the node's children. pos and left are not used.
node->value.content.children = link->nodes;
} else {
mpack_log("allocating new page for %i children, wasting %i in page of size %i\n",
(int)total, (int)parser->tree->page.left, (int)MPACK_NODE_PAGE_SIZE);
// Move the current page into the new link, and allocate a new page
*link = parser->tree->page;
parser->tree->page.next = link;
parser->tree->page.nodes = (mpack_node_data_t*)MPACK_MALLOC(sizeof(mpack_node_data_t) * MPACK_NODE_PAGE_SIZE);
if (parser->tree->page.nodes == NULL) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
// Take this node's children from the page
node->value.content.children = parser->tree->page.nodes;
parser->tree->page.pos = total;
parser->tree->page.left = MPACK_NODE_PAGE_SIZE - total;
}
#else
// We can't grow if we don't have an allocator
mpack_tree_flag_error(parser->tree, mpack_error_too_big);
parser->level = 0;
return;
#endif
}
// Push this node onto the stack to read its children
++parser->level;
parser->stack[parser->level].child = node->value.content.children;
parser->stack[parser->level].left = total;
}
void mpack_tree_parse_bytes(mpack_tree_parser_t* parser, mpack_node_data_t* node) {
size_t length = node->value.data.l;
if (length > parser->possible_nodes_left) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
node->value.data.bytes = parser->data;
parser->data += length;
parser->left -= length;
parser->possible_nodes_left -= length;
}
void mpack_tree_parse(mpack_tree_t* tree, const char* data, size_t length) {
mpack_log("starting parse\n");
// This function is unfortunately huge and ugly, but there isn't
// a good way to break it apart without losing performance. It's
// well-commented to try to make up for it.
if (length == 0) {
mpack_tree_init_error(tree, mpack_error_io);
return;
}
if (tree->page.left == 0) {
mpack_break("initial page has no nodes!");
mpack_tree_init_error(tree, mpack_error_bug);
return;
}
tree->root = tree->page.nodes + tree->page.pos;
++tree->page.pos;
--tree->page.left;
// Setup parser
mpack_tree_parser_t parser;
mpack_memset(&parser, 0, sizeof(parser));
parser.tree = tree;
parser.data = data;
parser.left = length;
// We read nodes in a loop instead of recursively for maximum
// performance. The stack holds the amount of children left to
// read in each level of the tree.
// Even when we have a malloc() function, it's much faster to
// allocate the initial parsing stack on the call stack. We
// replace it with a heap allocation if we need to grow it.
#ifdef MPACK_MALLOC
static const size_t initial_depth = MPACK_NODE_INITIAL_DEPTH;
parser.stack_allocated = true;
#else
static const size_t initial_depth = MPACK_NODE_MAX_DEPTH_WITHOUT_MALLOC;
#endif
mpack_level_t stack_[initial_depth];
parser.depth = initial_depth;
parser.stack = stack_;
// We keep track of the number of possible nodes left in the data. This
// is to ensure that malicious nested data is not trying to make us
// run out of memory by allocating too many nodes. (For example malicious
// data that repeats 0xDE 0xFF 0xFF would otherwise cause us to run out
// of memory. With this, the parser can only allocate as many nodes as
// there are bytes in the data (plus the paging overhead, 12%.) An error
// will be flagged immediately if and when there isn't enough data left
// to fully read all children of all open compound types on the stack.)
parser.possible_nodes_left = length;
// configure the root node
--parser.possible_nodes_left;
tree->node_count = 1;
parser.level = 0;
parser.stack[0].child = tree->root;
parser.stack[0].left = 1;
do {
mpack_node_data_t* node = parser.stack[parser.level].child;
--parser.stack[parser.level].left;
++parser.stack[parser.level].child;
// read the type (we've already counted this byte in possible_nodes_left)
++parser.possible_nodes_left;
uint8_t type = mpack_tree_u8(&parser);
// as with mpack_read_tag(), the fastest way to parse a node is to switch
// on the first byte, and to explicitly list every possible byte.
switch (type) {
// positive fixnum
case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07:
case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f:
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f:
case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57:
case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f:
case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67:
case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f:
case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77:
case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f:
node->type = mpack_type_uint;
node->value.u = type;
break;
// negative fixnum
case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7:
case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef:
case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7:
case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff:
node->type = mpack_type_int;
node->value.i = (int8_t)type;
break;
// fixmap
case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f:
node->type = mpack_type_map;
node->value.content.n = type & ~0xf0;
mpack_tree_parse_children(&parser, node);
break;
// fixarray
case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f:
node->type = mpack_type_array;
node->value.content.n = type & ~0xf0;
mpack_tree_parse_children(&parser, node);
break;
// fixstr
case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf:
case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf:
node->type = mpack_type_str;
node->value.data.l = type & ~0xe0;
mpack_tree_parse_bytes(&parser, node);
break;
// nil
case 0xc0:
node->type = mpack_type_nil;
break;
// bool
case 0xc2: case 0xc3:
node->type = mpack_type_bool;
node->value.b = type & 1;
break;
// bin8
case 0xc4:
node->type = mpack_type_bin;
node->value.data.l = mpack_tree_u8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// bin16
case 0xc5:
node->type = mpack_type_bin;
node->value.data.l = mpack_tree_u16(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// bin32
case 0xc6:
node->type = mpack_type_bin;
node->value.data.l = mpack_tree_u32(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// ext8
case 0xc7:
node->type = mpack_type_ext;
node->value.data.l = mpack_tree_u8(&parser);
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// ext16
case 0xc8:
node->type = mpack_type_ext;
node->value.data.l = mpack_tree_u16(&parser);
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// ext32
case 0xc9:
node->type = mpack_type_ext;
node->value.data.l = mpack_tree_u32(&parser);
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// float
case 0xca:
node->type = mpack_type_float;
node->value.f = mpack_tree_float(&parser);
break;
// double
case 0xcb:
node->type = mpack_type_double;
node->value.d = mpack_tree_double(&parser);
break;
// uint8
case 0xcc:
node->type = mpack_type_uint;
node->value.u = mpack_tree_u8(&parser);
break;
// uint16
case 0xcd:
node->type = mpack_type_uint;
node->value.u = mpack_tree_u16(&parser);
break;
// uint32
case 0xce:
node->type = mpack_type_uint;
node->value.u = mpack_tree_u32(&parser);
break;
// uint64
case 0xcf:
node->type = mpack_type_uint;
node->value.u = mpack_tree_u64(&parser);
break;
// int8
case 0xd0:
node->type = mpack_type_int;
node->value.i = mpack_tree_i8(&parser);
break;
// int16
case 0xd1:
node->type = mpack_type_int;
node->value.i = mpack_tree_i16(&parser);
break;
// int32
case 0xd2:
node->type = mpack_type_int;
node->value.i = mpack_tree_i32(&parser);
break;
// int64
case 0xd3:
node->type = mpack_type_int;
node->value.i = mpack_tree_i64(&parser);
break;
// fixext1
case 0xd4:
node->type = mpack_type_ext;
node->value.data.l = 1;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// fixext2
case 0xd5:
node->type = mpack_type_ext;
node->value.data.l = 2;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// fixext4
case 0xd6:
node->type = mpack_type_ext;
node->value.data.l = 4;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// fixext8
case 0xd7:
node->type = mpack_type_ext;
node->value.data.l = 8;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// fixext16
case 0xd8:
node->type = mpack_type_ext;
node->value.data.l = 16;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// str8
case 0xd9:
node->type = mpack_type_str;
node->value.data.l = mpack_tree_u8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// str16
case 0xda:
node->type = mpack_type_str;
node->value.data.l = mpack_tree_u16(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// str32
case 0xdb:
node->type = mpack_type_str;
node->value.data.l = mpack_tree_u32(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// array16
case 0xdc:
node->type = mpack_type_array;
node->value.content.n = mpack_tree_u16(&parser);
mpack_tree_parse_children(&parser, node);
break;
// array32
case 0xdd:
node->type = mpack_type_array;
node->value.content.n = mpack_tree_u32(&parser);
mpack_tree_parse_children(&parser, node);
break;
// map16
case 0xde:
node->type = mpack_type_map;
node->value.content.n = mpack_tree_u16(&parser);
mpack_tree_parse_children(&parser, node);
break;
// map32
case 0xdf:
node->type = mpack_type_map;
node->value.content.n = mpack_tree_u32(&parser);
mpack_tree_parse_children(&parser, node);
break;
// reserved
case 0xc1:
mpack_tree_flag_error(tree, mpack_error_invalid);
break;
}
// Pop any empty compound types from the stack
while (parser.level != 0 && parser.stack[parser.level].left == 0)
--parser.level;
} while (parser.level != 0 && mpack_tree_error(parser.tree) == mpack_ok);
#ifdef MPACK_MALLOC
if (!parser.stack_allocated)
MPACK_FREE(parser.stack);
#endif
tree->size = length - parser.left;
mpack_log("parsed tree of %i bytes, %i bytes left\n", (int)tree->size, (int)parser.left);
mpack_log("%i nodes in final page\n", (int)tree->page.pos);
// This seems like a bug / performance flaw in GCC. In release the
// below assert would compile to:
//
// (!(possible_nodes_left == remaining) ? __builtin_unreachable() : ((void)0))
//
// This produces identical assembly with GCC 5.1 on ARM64 under -O3, but
// with -O3 -flto, node parsing is over 4% slower. This should be a no-op
// even in -flto since the function ends here and possible_nodes_left
// does not escape this function.
//
// Leaving a TODO: here to explore this further. In the meantime we preproc it
// under MPACK_DEBUG.
#if MPACK_DEBUG
mpack_assert(parser.possible_nodes_left == parser.left,
"incorrect calculation of possible nodes! %i possible nodes, but %i bytes remaining",
(int)parser.possible_nodes_left, (int)parser.left);
#endif
}
/*
* Tree functions
*/
mpack_node_t mpack_tree_root(mpack_tree_t* tree) {
return mpack_node(tree, (mpack_tree_error(tree) != mpack_ok) ? &tree->nil_node : tree->root);
}
void mpack_tree_init_clear(mpack_tree_t* tree) {
mpack_memset(tree, 0, sizeof(*tree));
tree->nil_node.type = mpack_type_nil;
}
#ifdef MPACK_MALLOC
void mpack_tree_init(mpack_tree_t* tree, const char* data, size_t length) {
mpack_tree_init_clear(tree);
tree->owned = true;
// allocate first page
mpack_log("allocating initial page of size %i\n", (int)MPACK_NODE_PAGE_SIZE);
tree->page.nodes = (mpack_node_data_t*)MPACK_MALLOC(sizeof(mpack_node_data_t) * MPACK_NODE_PAGE_SIZE);
if (tree->page.nodes == NULL) {
tree->error = mpack_error_memory;
return;
}
tree->page.next = NULL;
tree->page.pos = 0;
tree->page.left = MPACK_NODE_PAGE_SIZE;
mpack_tree_parse(tree, data, length);
}
#endif
void mpack_tree_init_pool(mpack_tree_t* tree, const char* data, size_t length, mpack_node_data_t* node_pool, size_t node_pool_count) {
mpack_tree_init_clear(tree);
tree->page.next = NULL;
tree->page.nodes = node_pool;
tree->page.pos = 0;
tree->page.left = node_pool_count;
mpack_tree_parse(tree, data, length);
}
void mpack_tree_init_error(mpack_tree_t* tree, mpack_error_t error) {
mpack_tree_init_clear(tree);
tree->error = error;
}
#if MPACK_STDIO
typedef struct mpack_file_tree_t {
char* data;
size_t size;
char buffer[MPACK_BUFFER_SIZE];
} mpack_file_tree_t;
static void mpack_file_tree_teardown(mpack_tree_t* tree) {
mpack_file_tree_t* file_tree = (mpack_file_tree_t*)tree->context;
MPACK_FREE(file_tree->data);
MPACK_FREE(file_tree);
}
static bool mpack_file_tree_read(mpack_tree_t* tree, mpack_file_tree_t* file_tree, const char* filename, size_t max_size) {
// open the file
FILE* file = fopen(filename, "rb");
if (!file) {
mpack_tree_init_error(tree, mpack_error_io);
return false;
}
// get the file size
fseek(file, 0, SEEK_END);
long size = ftell(file);
fseek(file, 0, SEEK_SET);
if (size < 0) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_io);
return false;
}
if (size == 0) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_invalid);
return false;
}
// make sure the size is less than max_size
// (this mess exists to safely convert between long and size_t regardless of their widths)
if (max_size != 0 && (((uint64_t)LONG_MAX > (uint64_t)SIZE_MAX && size > (long)SIZE_MAX) || (size_t)size > max_size)) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_too_big);
return false;
}
// allocate data
file_tree->data = (char*)MPACK_MALLOC(size);
if (file_tree->data == NULL) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_memory);
return false;
}
// read the file
long total = 0;
while (total < size) {
size_t read = fread(file_tree->data + total, 1, (size_t)(size - total), file);
if (read <= 0) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_io);
MPACK_FREE(file_tree->data);
return false;
}
total += read;
}
fclose(file);
file_tree->size = (size_t)size;
return true;
}
void mpack_tree_init_file(mpack_tree_t* tree, const char* filename, size_t max_size) {
// the C STDIO family of file functions use long (e.g. ftell)
if (max_size > LONG_MAX) {
mpack_break("max_size of %" PRIu64 " is invalid, maximum is LONG_MAX", (uint64_t)max_size);
mpack_tree_init_error(tree, mpack_error_too_big);
return;
}
// allocate file tree
mpack_file_tree_t* file_tree = (mpack_file_tree_t*) MPACK_MALLOC(sizeof(mpack_file_tree_t));
if (file_tree == NULL) {
mpack_tree_init_error(tree, mpack_error_memory);
return;
}
// read all data
if (!mpack_file_tree_read(tree, file_tree, filename, max_size)) {
MPACK_FREE(file_tree);
return;
}
mpack_tree_init(tree, file_tree->data, file_tree->size);
mpack_tree_set_context(tree, file_tree);
mpack_tree_set_teardown(tree, mpack_file_tree_teardown);
}
#endif
mpack_error_t mpack_tree_destroy(mpack_tree_t* tree) {
#ifdef MPACK_MALLOC
if (tree->owned) {
if (tree->page.nodes)
MPACK_FREE(tree->page.nodes);
mpack_tree_link_t* link = tree->page.next;
while (link) {
mpack_tree_link_t* next = link->next;
if (link->nodes)
MPACK_FREE(link->nodes);
MPACK_FREE(link);
link = next;
}
}
#endif
if (tree->teardown)
tree->teardown(tree);
tree->teardown = NULL;
return tree->error;
}
void mpack_tree_flag_error(mpack_tree_t* tree, mpack_error_t error) {
mpack_log("tree %p setting error %i: %s\n", tree, (int)error, mpack_error_to_string(error));
if (tree->error == mpack_ok) {
tree->error = error;
if (tree->error_fn)
tree->error_fn(tree, error);
}
}
/*
* Node misc functions
*/
void mpack_node_flag_error(mpack_node_t node, mpack_error_t error) {
mpack_tree_flag_error(node.tree, error);
}
mpack_tag_t mpack_node_tag(mpack_node_t node) {
mpack_tag_t tag;
mpack_memset(&tag, 0, sizeof(tag));
tag.type = node.data->type;
switch (node.data->type) {
case mpack_type_nil: break;
case mpack_type_bool: tag.v.b = node.data->value.b; break;
case mpack_type_float: tag.v.f = node.data->value.f; break;
case mpack_type_double: tag.v.d = node.data->value.d; break;
case mpack_type_int: tag.v.i = node.data->value.i; break;
case mpack_type_uint: tag.v.u = node.data->value.u; break;
case mpack_type_str: tag.v.l = node.data->value.data.l; break;
case mpack_type_bin: tag.v.l = node.data->value.data.l; break;
case mpack_type_ext: tag.v.l = node.data->value.data.l; break;
case mpack_type_array: tag.v.n = node.data->value.content.n; break;
case mpack_type_map: tag.v.n = node.data->value.content.n; break;
}
return tag;
}
#if MPACK_DEBUG && MPACK_STDIO && !MPACK_NO_PRINT
static void mpack_node_print_element(mpack_node_t node, size_t depth) {
mpack_node_data_t* data = node.data;
switch (data->type) {
case mpack_type_nil:
printf("null");
break;
case mpack_type_bool:
printf(data->value.b ? "true" : "false");
break;
case mpack_type_float:
printf("%f", data->value.f);
break;
case mpack_type_double:
printf("%f", data->value.d);
break;
case mpack_type_int:
printf("%" PRIi64, data->value.i);
break;
case mpack_type_uint:
printf("%" PRIu64, data->value.u);
break;
case mpack_type_bin:
printf("<binary data of length %u>", data->value.data.l);
break;
case mpack_type_ext:
printf("<ext data of type %i and length %u>", data->exttype, data->value.data.l);
break;
case mpack_type_str:
{
putchar('"');
const char* bytes = mpack_node_data(node);
for (size_t i = 0; i < data->value.data.l; ++i) {
char c = bytes[i];
switch (c) {
case '\n': printf("\\n"); break;
case '\\': printf("\\\\"); break;
case '"': printf("\\\""); break;
default: putchar(c); break;
}
}
putchar('"');
}
break;
case mpack_type_array:
printf("[\n");
for (size_t i = 0; i < data->value.content.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
printf(" ");
mpack_node_print_element(mpack_node_array_at(node, i), depth + 1);
if (i != data->value.content.n - 1)
putchar(',');
putchar('\n');
}
for (size_t i = 0; i < depth; ++i)
printf(" ");
putchar(']');
break;
case mpack_type_map:
printf("{\n");
for (size_t i = 0; i < data->value.content.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
printf(" ");
mpack_node_print_element(mpack_node_map_key_at(node, i), depth + 1);
printf(": ");
mpack_node_print_element(mpack_node_map_value_at(node, i), depth + 1);
if (i != data->value.content.n - 1)
putchar(',');
putchar('\n');
}
for (size_t i = 0; i < depth; ++i)
printf(" ");
putchar('}');
break;
}
}
void mpack_node_print(mpack_node_t node) {
int depth = 2;
for (int i = 0; i < depth; ++i)
printf(" ");
mpack_node_print_element(node, depth);
putchar('\n');
}
#endif
/*
* Node Data Functions
*/
size_t mpack_node_copy_data(mpack_node_t node, char* buffer, size_t size) {
if (mpack_node_error(node) != mpack_ok)
return 0;
mpack_type_t type = node.data->type;
if (type != mpack_type_str && type != mpack_type_bin && type != mpack_type_ext) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
if (node.data->value.data.l > size) {
mpack_node_flag_error(node, mpack_error_too_big);
return 0;
}
mpack_memcpy(buffer, node.data->value.data.bytes, node.data->value.data.l);
return (size_t)node.data->value.data.l;
}
void mpack_node_copy_cstr(mpack_node_t node, char* buffer, size_t size) {
if (mpack_node_error(node) != mpack_ok)
return;
mpack_assert(size >= 1, "buffer size is zero; you must have room for at least a null-terminator");
if (node.data->type != mpack_type_str) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_type);
return;
}
if (node.data->value.data.l > size - 1) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_too_big);
return;
}
mpack_memcpy(buffer, node.data->value.data.bytes, node.data->value.data.l);
buffer[node.data->value.data.l] = '\0';
}
#ifdef MPACK_MALLOC
char* mpack_node_data_alloc(mpack_node_t node, size_t maxlen) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
// make sure this is a valid data type
mpack_type_t type = node.data->type;
if (type != mpack_type_str && type != mpack_type_bin && type != mpack_type_ext) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
if (node.data->value.data.l > maxlen) {
mpack_node_flag_error(node, mpack_error_too_big);
return NULL;
}
char* ret = (char*) MPACK_MALLOC((size_t)node.data->value.data.l);
if (ret == NULL) {
mpack_node_flag_error(node, mpack_error_memory);
return NULL;
}
mpack_memcpy(ret, node.data->value.data.bytes, node.data->value.data.l);
return ret;
}
char* mpack_node_cstr_alloc(mpack_node_t node, size_t maxlen) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
// make sure maxlen makes sense
if (maxlen < 1) {
mpack_break("maxlen is zero; you must have room for at least a null-terminator");
mpack_node_flag_error(node, mpack_error_bug);
return NULL;
}
if (node.data->type != mpack_type_str) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
if (node.data->value.data.l > maxlen - 1) {
mpack_node_flag_error(node, mpack_error_too_big);
return NULL;
}
char* ret = (char*) MPACK_MALLOC((size_t)(node.data->value.data.l + 1));
if (ret == NULL) {
mpack_node_flag_error(node, mpack_error_memory);
return NULL;
}
mpack_memcpy(ret, node.data->value.data.bytes, node.data->value.data.l);
ret[node.data->value.data.l] = '\0';
return ret;
}
#endif
/*
* Compound Node Functions
*/
mpack_node_t mpack_node_map_int_impl(mpack_node_t node, int64_t num, bool optional) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
for (size_t i = 0; i < node.data->value.content.n; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
mpack_node_data_t* value = mpack_node_child(node, i * 2 + 1);
if (key->type == mpack_type_int && key->value.i == num)
return mpack_node(node.tree, value);
if (key->type == mpack_type_uint && num >= 0 && key->value.u == (uint64_t)num)
return mpack_node(node.tree, value);
}
if (!optional)
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
mpack_node_t mpack_node_map_uint_impl(mpack_node_t node, uint64_t num, bool optional) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
for (size_t i = 0; i < node.data->value.content.n; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
mpack_node_data_t* value = mpack_node_child(node, i * 2 + 1);
if (key->type == mpack_type_uint && key->value.u == num)
return mpack_node(node.tree, value);
if (key->type == mpack_type_int && key->value.i >= 0 && (uint64_t)key->value.i == num)
return mpack_node(node.tree, value);
}
if (!optional)
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
mpack_node_t mpack_node_map_str_impl(mpack_node_t node, const char* str, size_t length, bool optional) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
for (size_t i = 0; i < node.data->value.content.n; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
mpack_node_data_t* value = mpack_node_child(node, i * 2 + 1);
if (key->type == mpack_type_str && key->value.data.l == length && mpack_memcmp(str, key->value.data.bytes, length) == 0)
return mpack_node(node.tree, value);
}
if (!optional)
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
bool mpack_node_map_contains_str(mpack_node_t node, const char* str, size_t length) {
if (mpack_node_error(node) != mpack_ok)
return false;
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return false;
}
for (size_t i = 0; i < node.data->value.content.n; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
if (key->type == mpack_type_str && key->value.data.l == length && mpack_memcmp(str, key->value.data.bytes, length) == 0)
return true;
}
return false;
}
#endif
/**
* The MIT License (MIT)
*
* Copyright (c) 2015 Nicholas Fraser
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
* This is the MPack 0.6 amalgamation package.
*
* http://github.com/ludocode/mpack
*/
#ifndef MPACK_H
#define MPACK_H 1
#define MPACK_AMALGAMATED 1
#include "mpack-config.h"
/* mpack-platform.h */
/**
* @file
*
* Abstracts all platform-specific code from MPack. This contains
* implementations of standard C functions when libc is not available,
* as well as wrappers to library functions.
*/
#ifndef MPACK_PLATFORM_H
#define MPACK_PLATFORM_H 1
/* For now, nothing in here should be seen by Doxygen. */
/** @cond */
#if defined(WIN32) && defined(MPACK_INTERNAL) && MPACK_INTERNAL
#define _CRT_SECURE_NO_WARNINGS 1
#endif
/* #include "mpack-config.h" */
/*
* Now that the config is included, we define to 0 any of the configuration
* options and other switches that aren't defined. This supports -Wundef
* without us having to write "#if defined(X) && X" everywhere (and while
* allowing configs to be pre-defined to 0.)
*/
#ifndef MPACK_READER
#define MPACK_READER 0
#endif
#ifndef MPACK_EXPECT
#define MPACK_EXPECT 0
#endif
#ifndef MPACK_NODE
#define MPACK_NODE 0
#endif
#ifndef MPACK_WRITER
#define MPACK_WRITER 0
#endif
#ifndef MPACK_STDLIB
#define MPACK_STDLIB 0
#endif
#ifndef MPACK_STDIO
#define MPACK_STDIO 0
#endif
#ifndef MPACK_DEBUG
#define MPACK_DEBUG 0
#endif
#ifndef MPACK_CUSTOM_ASSERT
#define MPACK_CUSTOM_ASSERT 0
#endif
#ifndef MPACK_READ_TRACKING
#define MPACK_READ_TRACKING 0
#endif
#ifndef MPACK_WRITE_TRACKING
#define MPACK_WRITE_TRACKING 0
#endif
#ifndef MPACK_NO_TRACKING
#define MPACK_NO_TRACKING 0
#endif
#ifndef MPACK_OPTIMIZE_FOR_SIZE
#define MPACK_OPTIMIZE_FOR_SIZE 0
#endif
#ifndef MPACK_EMIT_INLINE_DEFS
#define MPACK_EMIT_INLINE_DEFS 0
#endif
#ifndef MPACK_AMALGAMATED
#define MPACK_AMALGAMATED 0
#endif
#ifndef MPACK_INTERNAL
#define MPACK_INTERNAL 0
#endif
#ifndef MPACK_NO_PRINT
#define MPACK_NO_PRINT 0
#endif
/* System headers (based on configuration) */
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS 1
#endif
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS 1
#endif
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS 1
#endif
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <inttypes.h>
#include <limits.h>
#if MPACK_STDLIB
#include <string.h>
#include <stdlib.h>
#endif
#if MPACK_STDIO
#include <stdio.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* Miscellaneous helper macros */
#define MPACK_UNUSED(var) ((void)(var))
#define MPACK_STRINGIFY_IMPL(arg) #arg
#define MPACK_STRINGIFY(arg) MPACK_STRINGIFY_IMPL(arg)
/*
* Definition of inline macros.
*
* MPack supports several different modes for inline functions:
* - functions declared with a platform-specific always-inline (MPACK_ALWAYS_INLINE)
* - functions declared inline regardless of optimization options (MPACK_INLINE)
* - functions declared inline only in builds optimized for speed (MPACK_INLINE_SPEED)
*
* MPack does not use static inline in header files; only one non-inline definition
* of each function should exist in the final build. This can reduce the binary size
* in cases where the compiler cannot or chooses not to inline a function.
* The addresses of functions should also compare equal across translation units
* regardless of whether they are declared inline.
*
* The above requirements mean that the declaration and definition of non-trivial
* inline functions must be separated so that the definitions will only
* appear when necessary. In addition, three different linkage models need
* to be supported:
*
* - The C99 model, where "inline" does not emit a definition and "extern inline" does
* - The GNU model, where "inline" emits a definition and "extern inline" does not
* - The C++ model, where "inline" emits a definition with weak linkage
*
* The macros below wrap up everything above. All inline functions defined in header
* files have a single non-inline definition emitted in the compilation of
* mpack-platform.c.
*
* Inline functions in source files are defined static, so MPACK_STATIC_INLINE
* is used for small functions and MPACK_STATIC_INLINE_SPEED is used for
* larger optionally inline functions.
*/
#if defined(__cplusplus)
// C++ rules
// The linker will need weak symbol support to link C++ object files,
// so we don't need to worry about emitting a single definition.
#define MPACK_INLINE inline
#elif defined(__GNUC__) && (defined(__GNUC_GNU_INLINE__) || \
!defined(__GNUC_STDC_INLINE__) && !defined(__GNUC_GNU_INLINE__))
// GNU rules
#if MPACK_EMIT_INLINE_DEFS
#define MPACK_INLINE inline
#else
#define MPACK_INLINE extern inline
#endif
#else
// C99 rules
#if MPACK_EMIT_INLINE_DEFS
#define MPACK_INLINE extern inline
#else
#define MPACK_INLINE inline
#endif
#endif
#define MPACK_STATIC_INLINE static inline
#if MPACK_OPTIMIZE_FOR_SIZE
#define MPACK_STATIC_INLINE_SPEED static
#define MPACK_INLINE_SPEED /* nothing */
#if MPACK_EMIT_INLINE_DEFS
#define MPACK_DEFINE_INLINE_SPEED 1
#else
#define MPACK_DEFINE_INLINE_SPEED 0
#endif
#else
#define MPACK_STATIC_INLINE_SPEED static inline
#define MPACK_INLINE_SPEED MPACK_INLINE
#define MPACK_DEFINE_INLINE_SPEED 1
#endif
#ifdef MPACK_OPTIMIZE_FOR_SPEED
#error "You should define MPACK_OPTIMIZE_FOR_SIZE, not MPACK_OPTIMIZE_FOR_SPEED."
#endif
/* Some compiler-specific keywords and builtins */
#if defined(__GNUC__) || defined(__clang__)
#define MPACK_UNREACHABLE __builtin_unreachable()
#define MPACK_NORETURN(fn) fn __attribute__((noreturn))
#define MPACK_ALWAYS_INLINE __attribute__((always_inline)) MPACK_INLINE
#elif defined(_MSC_VER)
#define MPACK_UNREACHABLE __assume(0)
#define MPACK_NORETURN(fn) __declspec(noreturn) fn
#define MPACK_ALWAYS_INLINE __forceinline
#else
#define MPACK_UNREACHABLE ((void)0)
#define MPACK_NORETURN(fn) fn
#define MPACK_ALWAYS_INLINE MPACK_INLINE
#endif
/*
* Here we define mpack_assert() and mpack_break(). They both work like a normal
* assertion function in debug mode, causing a trap or abort. However, on some platforms
* you can safely resume execution from mpack_break(), whereas mpack_assert() is
* always fatal.
*
* In release mode, mpack_assert() is converted to an assurance to the compiler
* that the expression cannot be false (via e.g. __assume() or __builtin_unreachable())
* to improve optimization where supported. There is thus no point in "safely" handling
* the case of this being false. Writing mpack_assert(0) rarely makes sense (except
* possibly as a default handler in a switch) since the compiler will throw away any
* code after it. If at any time an mpack_assert() is not true, the behaviour is
* undefined. This also means the expression is evaluated even in release.
*
* mpack_break() on the other hand is compiled to nothing in release. It is
* used in situations where we want to highlight a programming error as early as
* possible (in the debugger), but we still handle the situation safely if it
* happens in release to avoid producing incorrect results (such as in
* MPACK_WRITE_TRACKING.) It does not take an expression to test because it
* belongs in a safe-handling block after its failing condition has been tested.
*
* If stdio is available, we can add a format string describing the error, and
* on some compilers we can declare it noreturn to get correct results from static
* analysis tools. Note that the format string and arguments are not evaluated unless
* the assertion is hit.
*
* Note that any arguments to mpack_assert() beyond the first are only evaluated
* if the expression is false (and are never evaluated in release.)
*
* mpack_assert_fail() and mpack_break_hit() are defined separately
* because assert is noreturn and break isn't. This distinction is very
* important for static analysis tools to give correct results.
*/
#if MPACK_DEBUG
MPACK_NORETURN(void mpack_assert_fail(const char* message));
#if MPACK_STDIO
MPACK_NORETURN(void mpack_assert_fail_format(const char* format, ...));
#define mpack_assert_fail_at(line, file, expr, ...) \
mpack_assert_fail_format("mpack assertion failed at " file ":" #line "\n" expr "\n" __VA_ARGS__)
#else
#define mpack_assert_fail_at(line, file, ...) \
mpack_assert_fail("mpack assertion failed at " file ":" #line )
#endif
#define mpack_assert_fail_pos(line, file, expr, ...) mpack_assert_fail_at(line, file, expr, __VA_ARGS__)
#define mpack_assert(expr, ...) ((!(expr)) ? mpack_assert_fail_pos(__LINE__, __FILE__, #expr, __VA_ARGS__) : (void)0)
void mpack_break_hit(const char* message);
#if MPACK_STDIO
void mpack_break_hit_format(const char* format, ...);
#define mpack_break_hit_at(line, file, ...) \
mpack_break_hit_format("mpack breakpoint hit at " file ":" #line "\n" __VA_ARGS__)
#else
#define mpack_break_hit_at(line, file, ...) \
mpack_break_hit("mpack breakpoint hit at " file ":" #line )
#endif
#define mpack_break_hit_pos(line, file, ...) mpack_break_hit_at(line, file, __VA_ARGS__)
#define mpack_break(...) mpack_break_hit_pos(__LINE__, __FILE__, __VA_ARGS__)
#else
#define mpack_assert(expr, ...) ((!(expr)) ? MPACK_UNREACHABLE, (void)0 : (void)0)
#define mpack_break(...) ((void)0)
#endif
/* Wrap some needed libc functions */
#if MPACK_STDLIB
#define mpack_memset memset
#define mpack_memcpy memcpy
#define mpack_memmove memmove
#define mpack_memcmp memcmp
#define mpack_strlen strlen
#else
void* mpack_memset(void *s, int c, size_t n);
void* mpack_memcpy(void *s1, const void *s2, size_t n);
void* mpack_memmove(void *s1, const void *s2, size_t n);
int mpack_memcmp(const void* s1, const void* s2, size_t n);
size_t mpack_strlen(const char *s);
#endif
/* Debug logging */
#if 0
#define mpack_log(...) printf(__VA_ARGS__);
#else
#define mpack_log(...) ((void)0)
#endif
/* Make sure our configuration makes sense */
#if defined(MPACK_MALLOC) && !defined(MPACK_FREE)
#error "MPACK_MALLOC requires MPACK_FREE."
#endif
#if !defined(MPACK_MALLOC) && defined(MPACK_FREE)
#error "MPACK_FREE requires MPACK_MALLOC."
#endif
#if MPACK_READ_TRACKING && !defined(MPACK_READER)
#error "MPACK_READ_TRACKING requires MPACK_READER."
#endif
#if MPACK_WRITE_TRACKING && !defined(MPACK_WRITER)
#error "MPACK_WRITE_TRACKING requires MPACK_WRITER."
#endif
#ifndef MPACK_MALLOC
#if MPACK_STDIO
#error "MPACK_STDIO requires preprocessor definitions for MPACK_MALLOC and MPACK_FREE."
#endif
#if MPACK_READ_TRACKING
#error "MPACK_READ_TRACKING requires preprocessor definitions for MPACK_MALLOC and MPACK_FREE."
#endif
#if MPACK_WRITE_TRACKING
#error "MPACK_WRITE_TRACKING requires preprocessor definitions for MPACK_MALLOC and MPACK_FREE."
#endif
#endif
/* Implement realloc if unavailable */
#ifdef MPACK_MALLOC
#ifdef MPACK_REALLOC
MPACK_ALWAYS_INLINE void* mpack_realloc(void* old_ptr, size_t used_size, size_t new_size) {
MPACK_UNUSED(used_size);
return MPACK_REALLOC(old_ptr, new_size);
}
#else
void* mpack_realloc(void* old_ptr, size_t used_size, size_t new_size);
#endif
#endif
/**
* @}
*/
#ifdef __cplusplus
}
#endif
/** @endcond */
#endif
/* mpack-common.h */
/**
* @file
*
* Defines types and functions shared by the MPack reader and writer.
*/
#ifndef MPACK_COMMON_H
#define MPACK_COMMON_H 1
/* #include "mpack-platform.h" */
/* Version information */
#define MPACK_VERSION_MAJOR 0 /**< The major version number of MPack. */
#define MPACK_VERSION_MINOR 6 /**< The minor version number of MPack. */
#define MPACK_VERSION_PATCH 0 /**< The patch version number of MPack. */
/** A number containing the version number of MPack for comparison purposes. */
#define MPACK_VERSION ((MPACK_VERSION_MAJOR * 10000) + \
(MPACK_VERSION_MINOR * 100) + MPACK_VERSION_PATCH)
/** A macro to test for a minimum version of MPack. */
#define MPACK_VERSION_AT_LEAST(major, minor, patch) \
(MPACK_VERSION >= (((major) * 10000) + ((minor) * 100) + (patch)))
/** @cond */
#if (MPACK_VERSION_PATCH > 0)
#define MPACK_VERSION_STRING_BASE \
MPACK_STRINGIFY(MPACK_VERSION_MAJOR) "." \
MPACK_STRINGIFY(MPACK_VERSION_MINOR) "." \
MPACK_STRINGIFY(MPACK_VERSION_PATCH)
#else
#define MPACK_VERSION_STRING_BASE \
MPACK_STRINGIFY(MPACK_VERSION_MAJOR) "." \
MPACK_STRINGIFY(MPACK_VERSION_MINOR)
#endif
/** @endcond */
/**
* @def MPACK_VERSION_STRING
* @hideinitializer
*
* A string containing the MPack version.
*/
#if MPACK_AMALGAMATED
#define MPACK_VERSION_STRING MPACK_VERSION_STRING_BASE
#else
#define MPACK_VERSION_STRING MPACK_VERSION_STRING_BASE "dev"
#endif
/**
* @def MPACK_LIBRARY_STRING
* @hideinitializer
*
* A string describing MPack, containing the library name, version and debug mode.
*/
#if MPACK_DEBUG
#define MPACK_LIBRARY_STRING "MPack " MPACK_VERSION_STRING "-debug"
#else
#define MPACK_LIBRARY_STRING "MPack " MPACK_VERSION_STRING
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup common Common Elements
*
* Contains types and functions shared by both the encoding and decoding
* portions of MPack.
*
* @{
*/
/**
* Error states for MPack objects.
*
* When a reader, writer, or tree is in an error state, all subsequent calls
* are ignored and their return values are nil/zero. You should check whether
* the source is in an error state before using such values.
*/
typedef enum mpack_error_t {
mpack_ok = 0, /**< No error. */
mpack_error_io = 2, /**< The reader or writer failed to fill or flush, or some other file or socket error occurred. */
mpack_error_invalid, /**< The data read is not valid MessagePack. */
mpack_error_type, /**< The type or value range did not match what was expected by the caller. */
mpack_error_too_big, /**< A read or write was bigger than the maximum size allowed for that operation. */
mpack_error_memory, /**< An allocation failure occurred. */
mpack_error_bug, /**< The MPack API was used incorrectly. (This will always assert in debug mode.) */
mpack_error_data, /**< The contained data is not valid. */
} mpack_error_t;
/**
* Converts an mpack error to a string. This function returns an empty
* string when MPACK_DEBUG is not set.
*/
const char* mpack_error_to_string(mpack_error_t error);
/**
* Defines the type of a MessagePack tag.
*/
typedef enum mpack_type_t {
mpack_type_nil = 1, /**< A null value. */
mpack_type_bool, /**< A boolean (true or false.) */
mpack_type_float, /**< A 32-bit IEEE 754 floating point number. */
mpack_type_double, /**< A 64-bit IEEE 754 floating point number. */
mpack_type_int, /**< A 64-bit signed integer. */
mpack_type_uint, /**< A 64-bit unsigned integer. */
mpack_type_str, /**< A string. */
mpack_type_bin, /**< A chunk of binary data. */
mpack_type_ext, /**< A typed MessagePack extension object containing a chunk of binary data. */
mpack_type_array, /**< An array of MessagePack objects. */
mpack_type_map, /**< An ordered map of key/value pairs of MessagePack objects. */
} mpack_type_t;
/**
* Converts an mpack type to a string. This function returns an empty
* string when MPACK_DEBUG is not set.
*/
const char* mpack_type_to_string(mpack_type_t type);
/**
* An MPack tag is a MessagePack object header. It is a variant type representing
* any kind of object, and includes the value of that object when it is not a
* compound type (i.e. boolean, integer, float.)
*
* If the type is compound (str, bin, ext, array or map), the embedded data is
* stored separately.
*/
typedef struct mpack_tag_t {
mpack_type_t type; /**< The type of value. */
int8_t exttype; /**< The extension type if the type is @ref mpack_type_ext. */
/** The value for non-compound types. */
union
{
bool b; /**< The value if the type is bool. */
float f; /**< The value if the type is float. */
double d; /**< The value if the type is double. */
int64_t i; /**< The value if the type is signed int. */
uint64_t u; /**< The value if the type is unsigned int. */
uint32_t l; /**< The number of bytes if the type is str, bin or ext. */
/** The element count if the type is an array, or the number of
key/value pairs if the type is map. */
uint32_t n;
} v;
} mpack_tag_t;
/** Generates a nil tag. */
MPACK_INLINE mpack_tag_t mpack_tag_nil(void) {
mpack_tag_t ret;
mpack_memset(&ret, 0, sizeof(ret));
ret.type = mpack_type_nil;
return ret;
}
/** Generates a signed int tag. */
MPACK_INLINE mpack_tag_t mpack_tag_int(int64_t value) {
mpack_tag_t ret;
mpack_memset(&ret, 0, sizeof(ret));
ret.type = mpack_type_int;
ret.v.i = value;
return ret;
}
/** Generates an unsigned int tag. */
MPACK_INLINE mpack_tag_t mpack_tag_uint(uint64_t value) {
mpack_tag_t ret;
mpack_memset(&ret, 0, sizeof(ret));
ret.type = mpack_type_uint;
ret.v.u = value;
return ret;
}
/** Generates a bool tag. */
MPACK_INLINE mpack_tag_t mpack_tag_bool(bool value) {
mpack_tag_t ret;
mpack_memset(&ret, 0, sizeof(ret));
ret.type = mpack_type_bool;
ret.v.b = value;
return ret;
}
/** Generates a float tag. */
MPACK_INLINE mpack_tag_t mpack_tag_float(float value) {
mpack_tag_t ret;
mpack_memset(&ret, 0, sizeof(ret));
ret.type = mpack_type_float;
ret.v.f = value;
return ret;
}
/** Generates a double tag. */
MPACK_INLINE mpack_tag_t mpack_tag_double(double value) {
mpack_tag_t ret;
mpack_memset(&ret, 0, sizeof(ret));
ret.type = mpack_type_double;
ret.v.d = value;
return ret;
}
/**
* Compares two tags with an arbitrary fixed ordering. Returns 0 if the tags are
* equal, a negative integer if left comes before right, or a positive integer
* otherwise.
*
* See mpack_tag_equal() for information on when tags are considered
* to be equal.
*
* The ordering is not guaranteed to be preserved across mpack versions; do not
* rely on it in serialized data.
*/
int mpack_tag_cmp(mpack_tag_t left, mpack_tag_t right);
/**
* Compares two tags for equality. Tags are considered equal if the types are compatible
* and the values (for non-compound types) are equal.
*
* The field width of variable-width fields is ignored (and in fact is not stored
* in a tag), and positive numbers in signed integers are considered equal to their
* unsigned counterparts. So for example the value 1 stored as a positive fixint
* is equal to the value 1 stored in a 64-bit unsigned integer field.
*
* The "extension type" of an extension object is considered part of the value
* and much match exactly.
*
* Floating point numbers are compared bit-for-bit, not using the language's operator==.
*/
MPACK_INLINE bool mpack_tag_equal(mpack_tag_t left, mpack_tag_t right) {
return mpack_tag_cmp(left, right) == 0;
}
/**
* @}
*/
/* Helpers for fetching an arbitrarily sized int from a memory
* location, regardless of endianness or alignment. */
/** @cond */
MPACK_ALWAYS_INLINE uint8_t mpack_load_native_u8(const char* p) {
return (uint8_t)p[0];
}
MPACK_ALWAYS_INLINE uint16_t mpack_load_native_u16(const char* p) {
return (uint16_t)((((uint16_t)(uint8_t)p[0]) << 8) |
((uint16_t)(uint8_t)p[1]));
}
MPACK_ALWAYS_INLINE uint32_t mpack_load_native_u32(const char* p) {
return (((uint32_t)(uint8_t)p[0]) << 24) |
(((uint32_t)(uint8_t)p[1]) << 16) |
(((uint32_t)(uint8_t)p[2]) << 8) |
((uint32_t)(uint8_t)p[3]);
}
MPACK_ALWAYS_INLINE uint64_t mpack_load_native_u64(const char* p) {
return (((uint64_t)(uint8_t)p[0]) << 56) |
(((uint64_t)(uint8_t)p[1]) << 48) |
(((uint64_t)(uint8_t)p[2]) << 40) |
(((uint64_t)(uint8_t)p[3]) << 32) |
(((uint64_t)(uint8_t)p[4]) << 24) |
(((uint64_t)(uint8_t)p[5]) << 16) |
(((uint64_t)(uint8_t)p[6]) << 8) |
((uint64_t)(uint8_t)p[7]);
}
/** @endcond */
#if MPACK_READ_TRACKING || MPACK_WRITE_TRACKING
/* Tracks the write state of compound elements (maps, arrays, */
/* strings, binary blobs and extension types) */
/** @cond */
typedef struct mpack_track_element_t {
mpack_type_t type;
uint64_t left; // we need 64-bit because (2 * INT32_MAX) elements can be stored in a map
} mpack_track_element_t;
typedef struct mpack_track_t {
size_t count;
size_t capacity;
mpack_track_element_t* elements;
} mpack_track_t;
#if MPACK_INTERNAL
mpack_error_t mpack_track_init(mpack_track_t* track);
mpack_error_t mpack_track_grow(mpack_track_t* track);
// These look like some overly large inline functions, but really
// they are mostly asserts. They boil down to just a few checks
// and assignments.
MPACK_INLINE_SPEED mpack_error_t mpack_track_push(mpack_track_t* track, mpack_type_t type, uint64_t count);
MPACK_INLINE_SPEED mpack_error_t mpack_track_pop(mpack_track_t* track, mpack_type_t type);
MPACK_INLINE_SPEED mpack_error_t mpack_track_element(mpack_track_t* track, bool read);
MPACK_INLINE_SPEED mpack_error_t mpack_track_bytes(mpack_track_t* track, bool read, uint64_t count);
MPACK_INLINE_SPEED mpack_error_t mpack_track_check_empty(mpack_track_t* track);
MPACK_INLINE_SPEED mpack_error_t mpack_track_destroy(mpack_track_t* track, bool cancel);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED mpack_error_t mpack_track_push(mpack_track_t* track, mpack_type_t type, uint64_t count) {
mpack_assert(track->elements, "null track elements!");
// maps have twice the number of elements (key/value pairs)
if (type == mpack_type_map)
count *= 2;
// grow if needed
if (track->count == track->capacity) {
mpack_error_t error = mpack_track_grow(track);
if (error != mpack_ok)
return error;
}
// insert new track
track->elements[track->count].type = type;
track->elements[track->count].left = count;
++track->count;
return mpack_ok;
}
MPACK_INLINE_SPEED mpack_error_t mpack_track_pop(mpack_track_t* track, mpack_type_t type) {
mpack_assert(track->elements, "null track elements!");
if (track->count == 0) {
mpack_break("attempting to close a %s but nothing was opened!", mpack_type_to_string(type));
return mpack_error_bug;
}
mpack_track_element_t* element = &track->elements[track->count - 1];
if (element->type != type) {
mpack_break("attempting to close a %s but the open element is a %s!",
mpack_type_to_string(type), mpack_type_to_string(element->type));
return mpack_error_bug;
}
if (element->left != 0) {
mpack_break("attempting to close a %s but there are %" PRIu64 " %s left",
mpack_type_to_string(type), element->left,
(type == mpack_type_map || type == mpack_type_array) ? "elements" : "bytes");
return mpack_error_bug;
}
--track->count;
return mpack_ok;
}
MPACK_INLINE_SPEED mpack_error_t mpack_track_element(mpack_track_t* track, bool read) {
MPACK_UNUSED(read);
mpack_assert(track->elements, "null track elements!");
// if there are no open elements, that's fine, we can read elements at will
if (track->count == 0)
return mpack_ok;
mpack_track_element_t* element = &track->elements[track->count - 1];
if (element->type != mpack_type_map && element->type != mpack_type_array) {
mpack_break("elements cannot be %s within an %s", read ? "read" : "written",
mpack_type_to_string(element->type));
return mpack_error_bug;
}
if (element->left == 0) {
mpack_break("too many elements %s for %s", read ? "read" : "written",
mpack_type_to_string(element->type));
return mpack_error_bug;
}
--element->left;
return mpack_ok;
}
MPACK_INLINE_SPEED mpack_error_t mpack_track_bytes(mpack_track_t* track, bool read, uint64_t count) {
MPACK_UNUSED(read);
mpack_assert(track->elements, "null track elements!");
if (track->count == 0) {
mpack_break("bytes cannot be %s with no open bin, str or ext", read ? "read" : "written");
return mpack_error_bug;
}
mpack_track_element_t* element = &track->elements[track->count - 1];
if (element->type == mpack_type_map || element->type == mpack_type_array) {
mpack_break("bytes cannot be %s within an %s", read ? "read" : "written",
mpack_type_to_string(element->type));
return mpack_error_bug;
}
if (element->left < count) {
mpack_break("too many bytes %s for %s", read ? "read" : "written",
mpack_type_to_string(element->type));
return mpack_error_bug;
}
element->left -= count;
return mpack_ok;
}
MPACK_INLINE_SPEED mpack_error_t mpack_track_check_empty(mpack_track_t* track) {
if (track->count != 0) {
mpack_assert(0, "unclosed %s", mpack_type_to_string(track->elements[0].type));
return mpack_error_bug;
}
return mpack_ok;
}
MPACK_INLINE_SPEED mpack_error_t mpack_track_destroy(mpack_track_t* track, bool cancel) {
mpack_error_t error = cancel ? mpack_ok : mpack_track_check_empty(track);
MPACK_FREE(track->elements);
track->elements = NULL;
return error;
}
#endif
#endif
/** @endcond */
#endif
#if MPACK_INTERNAL
/* The below code is from Bjoern Hoehrmann's Flexible and Economical */
/* UTF-8 decoder, modified to support MPack inlining and add the mpack prefix. */
/* Copyright (c) 2008-2010 Bjoern Hoehrmann <bjoern@hoehrmann.de> */
/* See http://bjoern.hoehrmann.de/utf-8/decoder/dfa/ for details. */
#define MPACK_UTF8_ACCEPT 0
#define MPACK_UTF8_REJECT 12
MPACK_INLINE_SPEED uint32_t mpack_utf8_decode(uint32_t* state, uint32_t* codep, uint32_t byte);
#if MPACK_DEFINE_INLINE_SPEED
extern const uint8_t mpack_utf8d[];
MPACK_INLINE_SPEED uint32_t mpack_utf8_decode(uint32_t* state, uint32_t* codep, uint32_t byte) {
uint32_t type = mpack_utf8d[byte];
*codep = (*state != MPACK_UTF8_ACCEPT) ?
(byte & 0x3fu) | (*codep << 6) :
(0xff >> type) & (byte);
*state = mpack_utf8d[256 + *state + type];
return *state;
}
#endif
#endif
#ifdef __cplusplus
}
#endif
#endif
/* mpack-writer.h */
/**
* @file
*
* Declares the MPack Writer.
*/
#ifndef MPACK_WRITER_H
#define MPACK_WRITER_H 1
/* #include "mpack-common.h" */
#if MPACK_WRITER
#ifdef __cplusplus
extern "C" {
#endif
#if MPACK_WRITE_TRACKING
struct mpack_track_t;
#endif
/**
* @defgroup writer Write API
*
* The MPack Write API encodes structured data of a fixed (hardcoded) schema to MessagePack.
*
* @{
*/
/**
* A buffered MessagePack encoder.
*
* The encoder wraps an existing buffer and, optionally, a flush function.
* This allows efficiently encoding to an in-memory buffer or to a stream.
*
* All write operations are synchronous; they will block until the
* data is fully written, or an error occurs.
*/
typedef struct mpack_writer_t mpack_writer_t;
/**
* The mpack writer's flush function to flush the buffer to the output stream.
* It should flag an appropriate error on the writer if flushing fails (usually
* mpack_error_io.)
*
* The specified context for callbacks is at writer->context.
*/
typedef void (*mpack_writer_flush_t)(mpack_writer_t* writer, const char* buffer, size_t count);
/**
* An error handler function to be called when an error is flagged on
* the writer.
*
* The error handler will only be called once on the first error flagged;
* any subsequent writes and errors are ignored, and the writer is
* permanently in that error state.
*
* MPack is safe against non-local jumps out of error handler callbacks.
* This means you are allowed to longjmp or throw an exception (in C++
* or with SEH) out of this callback.
*
* Bear in mind when using longjmp that local non-volatile variables that
* have changed are undefined when setjmp() returns, so you can't put the
* writer on the stack in the same activation frame as the setjmp without
* declaring it volatile.)
*
* You must still eventually destroy the writer. It is not destroyed
* automatically when an error is flagged. It is safe to destroy the
* writer within this error callback, but you will either need to perform
* a non-local jump, or store something in your context to identify
* that the writer is destroyed since any future accesses to it cause
* undefined behavior.
*/
typedef void (*mpack_writer_error_t)(mpack_writer_t* writer, mpack_error_t error);
/**
* A teardown function to be called when the writer is destroyed.
*/
typedef void (*mpack_writer_teardown_t)(mpack_writer_t* writer);
struct mpack_writer_t {
mpack_writer_flush_t flush; /* Function to write bytes to the output stream */
mpack_writer_error_t error_fn; /* Function to call on error */
mpack_writer_teardown_t teardown; /* Function to teardown the context on destroy */
void* context; /* Context for writer callbacks */
char* buffer; /* Byte buffer */
size_t size; /* Size of the buffer */
size_t used; /* How many bytes have been written into the buffer */
mpack_error_t error; /* Error state */
#if MPACK_WRITE_TRACKING
mpack_track_t track; /* Stack of map/array/str/bin/ext writes */
#endif
};
/**
* @name Core Writer Functions
* @{
*/
/**
* Initializes an mpack writer with the given buffer. The writer
* does not assume ownership of the buffer.
*
* Trying to write past the end of the buffer will result in mpack_error_io unless
* a flush function is set with mpack_writer_set_flush(). To use the data without
* flushing, call mpack_writer_buffer_used() to determine the number of bytes
* written.
*
* @param writer The MPack writer.
* @param buffer The buffer into which to write mpack data.
* @param size The size of the buffer.
*/
void mpack_writer_init(mpack_writer_t* writer, char* buffer, size_t size);
#ifdef MPACK_MALLOC
/**
* Initializes an mpack writer using a growable buffer.
*
* The data is placed in the given data pointer if and when the writer
* is destroyed without error. The data should be freed with MPACK_FREE().
* The data pointer is NULL during writing, and will remain NULL
* if an error occurs.
*
* mpack_error_memory is raised if the buffer fails to grow.
*
* @param writer The MPack writer.
* @param data Where to place the allocated data.
* @param size Where to write the size of the data.
*/
void mpack_writer_init_growable(mpack_writer_t* writer, char** data, size_t* size);
#endif
/**
* Initializes an mpack writer directly into an error state. Use this if you
* are writing a wrapper to mpack_writer_init() which can fail its setup.
*/
void mpack_writer_init_error(mpack_writer_t* writer, mpack_error_t error);
#if MPACK_STDIO
/**
* Initializes an mpack writer that writes to a file.
*/
void mpack_writer_init_file(mpack_writer_t* writer, const char* filename);
#endif
/**
* @def mpack_writer_init_stack(writer, flush, context)
* @hideinitializer
*
* Initializes an mpack writer using stack space as a buffer. A flush function
* should be added to the writer to flush the buffer.
*/
#define mpack_writer_init_stack_line_ex(line, writer) \
char mpack_buf_##line[MPACK_STACK_SIZE]; \
mpack_writer_init(writer, mpack_buf_##line, sizeof(mpack_buf_##line))
#define mpack_writer_init_stack_line(line, writer) \
mpack_writer_init_stack_line_ex(line, writer)
#define mpack_writer_init_stack(writer) \
mpack_writer_init_stack_line(__LINE__, (writer))
/**
* Cleans up the mpack writer, flushing any buffered bytes to the
* underlying stream, if any. Returns the final error state of the
* writer in case an error occurred flushing. Causes an assert if
* there are any unclosed compound types in tracking mode.
*
* Note that if a jump handler is set, a writer may jump during destroy if it
* fails to flush any remaining data. In this case the writer will not be fully
* destroyed; you can still get the error state, and you must call destroy as
* usual in the jump handler.
*/
mpack_error_t mpack_writer_destroy(mpack_writer_t* writer);
/**
* Cleans up the mpack writer, discarding any open writes and unflushed data.
*
* Use this to cancel writing in the middle of writing a document (for example
* in case an error occurred.) This should be used instead of mpack_writer_destroy()
* because the former will assert in tracking mode if there are any unclosed
* compound types.
*/
void mpack_writer_destroy_cancel(mpack_writer_t* writer);
/**
* Sets the custom pointer to pass to the writer callbacks, such as flush
* or teardown.
*
* @param writer The MPack writer.
* @param context User data to pass to the writer callbacks.
*/
MPACK_INLINE void mpack_writer_set_context(mpack_writer_t* writer, void* context) {
writer->context = context;
}
/**
* Sets the flush function to write out the data when the buffer is full.
*
* If no flush function is used, trying to write past the end of the
* buffer will result in mpack_error_io.
*
* This should normally be used with mpack_writer_set_context() to register
* a custom pointer to pass to the flush function.
*
* @param writer The MPack writer.
* @param flush The function to write out data from the buffer.
*/
MPACK_INLINE void mpack_writer_set_flush(mpack_writer_t* writer, mpack_writer_flush_t flush) {
mpack_assert(writer->size != 0, "cannot use flush function without a writeable buffer!");
writer->flush = flush;
}
/**
* Sets the error function to call when an error is flagged on the writer.
*
* This should normally be used with mpack_writer_set_context() to register
* a custom pointer to pass to the error function.
*
* See the definition of mpack_writer_error_t for more information about
* what you can do from an error callback.
*
* @see mpack_writer_error_t
* @param writer The MPack writer.
* @param error The function to call when an error is flagged on the writer.
*/
MPACK_INLINE void mpack_writer_set_error_handler(mpack_writer_t* writer, mpack_writer_error_t error_fn) {
writer->error_fn = error_fn;
}
/**
* Sets the teardown function to call when the writer is destroyed.
*
* This should normally be used with mpack_writer_set_context() to register
* a custom pointer to pass to the teardown function.
*
* @param writer The MPack writer.
* @param teardown The function to call when the writer is destroyed.
*/
MPACK_INLINE void mpack_writer_set_teardown(mpack_writer_t* writer, mpack_writer_teardown_t teardown) {
writer->teardown = teardown;
}
/**
* Returns the number of bytes currently stored in the buffer. This
* may be less than the total number of bytes written if bytes have
* been flushed to an underlying stream.
*/
MPACK_INLINE size_t mpack_writer_buffer_used(mpack_writer_t* writer) {
return writer->used;
}
/**
* Places the writer in the given error state, jumping if a jump target is set.
*
* This allows you to externally flag errors, for example if you are validating
* data as you read it.
*
* If the writer is already in an error state, this call is ignored and no jump
* is performed.
*/
void mpack_writer_flag_error(mpack_writer_t* writer, mpack_error_t error);
/**
* Queries the error state of the mpack writer.
*
* If a writer is in an error state, you should discard all data since the
* last time the error flag was checked. The error flag cannot be cleared.
*/
MPACK_INLINE mpack_error_t mpack_writer_error(mpack_writer_t* writer) {
return writer->error;
}
/**
* Writes a MessagePack object header (an MPack Tag.)
*
* If the value is a map, array, string, binary or extension type, the
* containing elements or bytes must be written separately and the
* appropriate finish function must be called (as though one of the
* mpack_start_*() functions was called.)
*/
void mpack_write_tag(mpack_writer_t* writer, mpack_tag_t tag);
/**
* @}
*/
/**
* @name Typed Write Functions
* @{
*/
/*! Writes an 8-bit integer in the most efficient packing available. */
void mpack_write_i8(mpack_writer_t* writer, int8_t value);
/*! Writes a 16-bit integer in the most efficient packing available. */
void mpack_write_i16(mpack_writer_t* writer, int16_t value);
/*! Writes a 32-bit integer in the most efficient packing available. */
void mpack_write_i32(mpack_writer_t* writer, int32_t value);
/*! Writes a 64-bit integer in the most efficient packing available. */
void mpack_write_i64(mpack_writer_t* writer, int64_t value);
/*! Writes an integer in the most efficient packing available. */
MPACK_INLINE void mpack_write_int(mpack_writer_t* writer, int64_t value) {
mpack_write_i64(writer, value);
}
/*! Writes an 8-bit unsigned integer in the most efficient packing available. */
void mpack_write_u8(mpack_writer_t* writer, uint8_t value);
/*! Writes an 16-bit unsigned integer in the most efficient packing available. */
void mpack_write_u16(mpack_writer_t* writer, uint16_t value);
/*! Writes an 32-bit unsigned integer in the most efficient packing available. */
void mpack_write_u32(mpack_writer_t* writer, uint32_t value);
/*! Writes an 64-bit unsigned integer in the most efficient packing available. */
void mpack_write_u64(mpack_writer_t* writer, uint64_t value);
/*! Writes an unsigned integer in the most efficient packing available. */
MPACK_INLINE void mpack_write_uint(mpack_writer_t* writer, uint64_t value) {
mpack_write_u64(writer, value);
}
/*! Writes a float. */
void mpack_write_float(mpack_writer_t* writer, float value);
/*! Writes a double. */
void mpack_write_double(mpack_writer_t* writer, double value);
/*! Writes a boolean. */
void mpack_write_bool(mpack_writer_t* writer, bool value);
/*! Writes a boolean with value true. */
void mpack_write_true(mpack_writer_t* writer);
/*! Writes a boolean with value false. */
void mpack_write_false(mpack_writer_t* writer);
/*! Writes a nil. */
void mpack_write_nil(mpack_writer_t* writer);
/**
* Writes a string.
*
* To stream a string in chunks, use mpack_start_str() instead.
*
* MPack does not care about the underlying encoding, but UTF-8 is highly
* recommended, especially for compatibility with JSON.
*/
void mpack_write_str(mpack_writer_t* writer, const char* str, uint32_t length);
/**
* Writes a binary blob.
*
* To stream a binary blob in chunks, use mpack_start_bin() instead.
*/
void mpack_write_bin(mpack_writer_t* writer, const char* data, uint32_t count);
/**
* Writes an extension type.
*
* To stream an extension blob in chunks, use mpack_start_ext() instead.
*
* Extension types [0, 127] are available for application-specific types. Extension
* types [-128, -1] are reserved for future extensions of MessagePack.
*/
void mpack_write_ext(mpack_writer_t* writer, int8_t exttype, const char* data, uint32_t count);
/**
* Opens an array. count elements should follow, and mpack_finish_array()
* should be called when done.
*/
void mpack_start_array(mpack_writer_t* writer, uint32_t count);
/**
* Opens a map. count*2 elements should follow, and mpack_finish_map()
* should be called when done.
*
* Remember that while map elements in MessagePack are implicitly ordered,
* they are not ordered in JSON. If you need elements to be read back
* in the order they are written, consider use an array instead.
*/
void mpack_start_map(mpack_writer_t* writer, uint32_t count);
/**
* Opens a string. count bytes should be written with calls to
* mpack_write_bytes(), and mpack_finish_str() should be called
* when done.
*
* To write an entire string at once, use mpack_write_str() or
* mpack_write_cstr() instead.
*
* MPack does not care about the underlying encoding, but UTF-8 is highly
* recommended, especially for compatibility with JSON.
*/
void mpack_start_str(mpack_writer_t* writer, uint32_t count);
/**
* Opens a binary blob. count bytes should be written with calls to
* mpack_write_bytes(), and mpack_finish_bin() should be called
* when done.
*/
void mpack_start_bin(mpack_writer_t* writer, uint32_t count);
/**
* Opens an extension type. count bytes should be written with calls
* to mpack_write_bytes(), and mpack_finish_ext() should be called
* when done.
*
* Extension types [0, 127] are available for application-specific types. Extension
* types [-128, -1] are reserved for future extensions of MessagePack.
*/
void mpack_start_ext(mpack_writer_t* writer, int8_t exttype, uint32_t count);
/**
* Writes a portion of bytes for a string, binary blob or extension type which
* was opened by one of the mpack_start_*() functions. The corresponding
* mpack_finish_*() function should be called when done.
*
* To write an entire string, binary blob or extension type at
* once, use one of the mpack_write_*() functions instead.
*
* @see mpack_start_str()
* @see mpack_start_bin()
* @see mpack_start_ext()
* @see mpack_finish_str()
* @see mpack_finish_bin()
* @see mpack_finish_ext()
* @see mpack_write_str()
* @see mpack_write_bin()
* @see mpack_write_ext()
*/
void mpack_write_bytes(mpack_writer_t* writer, const char* data, size_t count);
#if MPACK_WRITE_TRACKING
/**
* Finishes writing an array.
*
* This will track writes to ensure that the correct number of elements are written.
*/
void mpack_finish_array(mpack_writer_t* writer);
/**
* Finishes writing a map.
*
* This will track writes to ensure that the correct number of elements are written.
*/
void mpack_finish_map(mpack_writer_t* writer);
/**
* Finishes writing a string.
*
* This will track writes to ensure that the correct number of bytes are written.
*/
void mpack_finish_str(mpack_writer_t* writer);
/**
* Finishes writing a binary blob.
*
* This will track writes to ensure that the correct number of bytes are written.
*/
void mpack_finish_bin(mpack_writer_t* writer);
/**
* Finishes writing an extended type binary data blob.
*
* This will track writes to ensure that the correct number of bytes are written.
*/
void mpack_finish_ext(mpack_writer_t* writer);
/**
* Finishes writing the given compound type.
*
* This will track writes to ensure that the correct number of elements
* or bytes are written.
*/
void mpack_finish_type(mpack_writer_t* writer, mpack_type_t type);
#else
MPACK_INLINE void mpack_finish_array(mpack_writer_t* writer) {MPACK_UNUSED(writer);}
MPACK_INLINE void mpack_finish_map(mpack_writer_t* writer) {MPACK_UNUSED(writer);}
MPACK_INLINE void mpack_finish_str(mpack_writer_t* writer) {MPACK_UNUSED(writer);}
MPACK_INLINE void mpack_finish_bin(mpack_writer_t* writer) {MPACK_UNUSED(writer);}
MPACK_INLINE void mpack_finish_ext(mpack_writer_t* writer) {MPACK_UNUSED(writer);}
MPACK_INLINE void mpack_finish_type(mpack_writer_t* writer, mpack_type_t type) {MPACK_UNUSED(writer); MPACK_UNUSED(type);}
#endif
/**
* Writes a null-terminated string. (The null-terminator is not written.)
*
* MPack does not care about the underlying encoding, but UTF-8 is highly
* recommended, especially for compatibility with JSON.
*/
void mpack_write_cstr(mpack_writer_t* writer, const char* str);
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif
#endif
/* mpack-reader.h */
/**
* @file
*
* Declares the core MPack Tag Reader.
*/
#ifndef MPACK_READER_H
#define MPACK_READER_H 1
/* #include "mpack-common.h" */
#if MPACK_READER
#ifdef __cplusplus
extern "C" {
#endif
#if MPACK_READ_TRACKING
struct mpack_track_t;
#endif
/**
* @defgroup reader Core Reader API
*
* The MPack Core Reader API contains functions for imperatively reading
* dynamically typed data from a MessagePack stream. This forms the basis
* of the Expect and Node APIs.
*
* @{
*/
/**
* A buffered MessagePack decoder.
*
* The decoder wraps an existing buffer and, optionally, a fill function.
* This allows efficiently decoding data from existing memory buffers, files,
* streams, etc.
*
* All read operations are synchronous; they will block until the
* requested data is fully read, or an error occurs.
*
* This structure is opaque; its fields should not be accessed outside
* of MPack.
*/
typedef struct mpack_reader_t mpack_reader_t;
/**
* The mpack reader's fill function. It should fill the buffer as
* much as possible, returning the number of bytes put into the buffer.
*
* In case of error, it should flag an appropriate error on the reader.
*/
typedef size_t (*mpack_reader_fill_t)(mpack_reader_t* reader, char* buffer, size_t count);
/**
* An error handler function to be called when an error is flagged on
* the reader.
*
* The error handler will only be called once on the first error flagged;
* any subsequent reads and errors are ignored, and the reader is
* permanently in that error state.
*
* MPack is safe against non-local jumps out of error handler callbacks.
* This means you are allowed to longjmp or throw an exception (in C++
* or with SEH) out of this callback.
*
* Bear in mind when using longjmp that local non-volatile variables that
* have changed are undefined when setjmp() returns, so you can't put the
* reader on the stack in the same activation frame as the setjmp without
* declaring it volatile.)
*
* You must still eventually destroy the reader. It is not destroyed
* automatically when an error is flagged. It is safe to destroy the
* reader within this error callback, but you will either need to perform
* a non-local jump, or store something in your context to identify
* that the reader is destroyed since any future accesses to it cause
* undefined behavior.
*/
typedef void (*mpack_reader_error_t)(mpack_reader_t* reader, mpack_error_t error);
/**
* A teardown function to be called when the reader is destroyed.
*/
typedef void (*mpack_reader_teardown_t)(mpack_reader_t* reader);
struct mpack_reader_t {
mpack_reader_fill_t fill; /* Function to read bytes into the buffer */
mpack_reader_error_t error_fn; /* Function to call on error */
mpack_reader_teardown_t teardown; /* Function to teardown the context on destroy */
void* context; /* Context for reader callbacks */
char* buffer; /* Byte buffer */
size_t size; /* Size of the buffer, or zero if it's const */
size_t left; /* How many bytes are left in the buffer */
size_t pos; /* Position within the buffer */
mpack_error_t error; /* Error state */
#if MPACK_READ_TRACKING
mpack_track_t track; /* Stack of map/array/str/bin/ext reads */
#endif
};
/**
* Initializes an mpack reader with the given buffer. The reader does
* not assume ownership of the buffer, but the buffer must be writeable
* if a fill function will be used to refill it.
*
* @param reader The MPack reader.
* @param buffer The buffer with which to read mpack data.
* @param size The size of the buffer.
* @param count The number of bytes already in the buffer.
*/
void mpack_reader_init(mpack_reader_t* reader, char* buffer, size_t size, size_t count);
/**
* Initializes an mpack reader directly into an error state. Use this if you
* are writing a wrapper to mpack_reader_init() which can fail its setup.
*/
void mpack_reader_init_error(mpack_reader_t* reader, mpack_error_t error);
/**
* Initializes an mpack reader to parse a pre-loaded contiguous chunk of data. The
* reader does not assume ownership of the data.
*
* @param reader The MPack reader.
* @param data The data to parse.
* @param count The number of bytes pointed to by data.
*/
void mpack_reader_init_data(mpack_reader_t* reader, const char* data, size_t count);
#if MPACK_STDIO
/**
* Initializes an mpack reader that reads from a file.
*/
void mpack_reader_init_file(mpack_reader_t* reader, const char* filename);
#endif
/**
* @def mpack_reader_init_stack(reader)
* @hideinitializer
*
* Initializes an mpack reader using stack space as a buffer. A fill function
* should be added to the reader to fill the buffer.
*
* @see mpack_reader_set_fill
*/
/** @cond */
#define mpack_reader_init_stack_line_ex(line, reader) \
char mpack_buf_##line[MPACK_STACK_SIZE]; \
mpack_reader_init((reader), mpack_buf_##line, sizeof(mpack_buf_##line), 0)
#define mpack_reader_init_stack_line(line, reader) \
mpack_reader_init_stack_line_ex(line, reader)
/** @endcond */
#define mpack_reader_init_stack(reader) \
mpack_reader_init_stack_line(__LINE__, (reader))
/**
* Cleans up the mpack reader, ensuring that all compound elements
* have been completely read. Returns the final error state of the
* reader.
*
* This will assert in tracking mode if the reader has any incomplete
* reads. If you want to cancel reading in the middle of a compound
* element and don't care about the rest of the document, call
* mpack_reader_destroy_cancel() instead.
*
* @see mpack_reader_destroy_cancel()
*/
mpack_error_t mpack_reader_destroy(mpack_reader_t* reader);
/**
* Cleans up the mpack reader, discarding any open reads.
*
* This should be used if you decide to cancel reading in the middle
* of the document.
*/
void mpack_reader_destroy_cancel(mpack_reader_t* reader);
/**
* Sets the custom pointer to pass to the reader callbacks, such as fill
* or teardown.
*
* @param reader The MPack reader.
* @param context User data to pass to the reader callbacks.
*/
MPACK_INLINE void mpack_reader_set_context(mpack_reader_t* reader, void* context) {
reader->context = context;
}
/**
* Sets the fill function to refill the data buffer when it runs out of data.
*
* If no fill function is used, trying to read past the end of the
* buffer will result in mpack_error_io.
*
* This should normally be used with mpack_reader_set_context() to register
* a custom pointer to pass to the fill function.
*
* @param reader The MPack reader.
* @param fill The function to fetch additional data into the buffer.
*/
MPACK_INLINE void mpack_reader_set_fill(mpack_reader_t* reader, mpack_reader_fill_t fill) {
mpack_assert(reader->size != 0, "cannot use fill function without a writeable buffer!");
reader->fill = fill;
}
/**
* Sets the error function to call when an error is flagged on the reader.
*
* This should normally be used with mpack_reader_set_context() to register
* a custom pointer to pass to the error function.
*
* See the definition of mpack_reader_error_t for more information about
* what you can do from an error callback.
*
* @see mpack_reader_error_t
* @param reader The MPack reader.
* @param error The function to call when an error is flagged on the reader.
*/
MPACK_INLINE void mpack_reader_set_error_handler(mpack_reader_t* reader, mpack_reader_error_t error_fn) {
reader->error_fn = error_fn;
}
/**
* Sets the teardown function to call when the reader is destroyed.
*
* This should normally be used with mpack_reader_set_context() to register
* a custom pointer to pass to the teardown function.
*
* @param reader The MPack reader.
* @param teardown The function to call when the reader is destroyed.
*/
MPACK_INLINE void mpack_reader_set_teardown(mpack_reader_t* reader, mpack_reader_teardown_t teardown) {
reader->teardown = teardown;
}
/**
* Queries the error state of the MPack reader.
*
* If a reader is in an error state, you should discard all data since the
* last time the error flag was checked. The error flag cannot be cleared.
*/
MPACK_INLINE mpack_error_t mpack_reader_error(mpack_reader_t* reader) {
return reader->error;
}
/**
* Places the reader in the given error state, jumping if a jump target is set.
*
* This allows you to externally flag errors, for example if you are validating
* data as you read it.
*
* If the reader is already in an error state, this call is ignored and no jump
* is performed.
*/
void mpack_reader_flag_error(mpack_reader_t* reader, mpack_error_t error);
/**
* Places the reader in the given error state if the given error is not mpack_ok,
* returning the resulting error state of the reader.
*
* This allows you to externally flag errors, for example if you are validating
* data as you read it.
*
* If the given error is mpack_ok or if the reader is already in an error state,
* this call is ignored and the actual error state of the reader is returned.
*/
MPACK_INLINE_SPEED mpack_error_t mpack_reader_flag_if_error(mpack_reader_t* reader, mpack_error_t error);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED mpack_error_t mpack_reader_flag_if_error(mpack_reader_t* reader, mpack_error_t error) {
if (error != mpack_ok)
mpack_reader_flag_error(reader, error);
return mpack_reader_error(reader);
}
#endif
/**
* Returns bytes left in the reader's buffer.
*
* If you are done reading MessagePack data but there is other interesting data
* following it, the reader may have buffered too much data. The number of bytes
* remaining in the buffer and a pointer to the position of those bytes can be
* queried here.
*
* If you know the length of the mpack chunk beforehand, it's better to instead
* have your fill function limit the data it reads so that the reader does not
* have extra data. In this case you can simply check that this returns zero.
*
* @param reader The MPack reader from which to query remaining data.
* @param data [out] A pointer to the remaining data, or NULL.
* @return The number of bytes remaining in the buffer.
*/
size_t mpack_reader_remaining(mpack_reader_t* reader, const char** data);
/**
* Reads a MessagePack object header (an MPack tag.)
*
* If an error occurs, the mpack_reader_t is placed in an error state and
* a nil tag is returned. If the reader is already in an error state, a
* nil tag is returned.
*
* If the type is compound (i.e. is a map, array, string, binary or
* extension type), additional reads are required to get the actual data,
* and the corresponding done function (or cancel) should be called when
* done.
*
* Note that maps in JSON are unordered, so it is recommended not to expect
* a specific ordering for your map values in case your data is converted
* to/from JSON.
*
* @see mpack_read_bytes()
* @see mpack_done_array()
* @see mpack_done_map()
* @see mpack_done_str()
* @see mpack_done_bin()
* @see mpack_done_ext()
* @see mpack_cancel()
*/
mpack_tag_t mpack_read_tag(mpack_reader_t* reader);
/**
* Skips bytes from the underlying stream. This is used only to
* skip the contents of a string, binary blob or extension object.
*/
void mpack_skip_bytes(mpack_reader_t* reader, size_t count);
/**
* Reads bytes from a string, binary blob or extension object.
*/
void mpack_read_bytes(mpack_reader_t* reader, char* p, size_t count);
/**
* Reads bytes from a string, binary blob or extension object in-place in
* the buffer. This can be used to avoid copying the data.
*
* The returned pointer is invalidated the next time the reader's fill
* function is called, or when the buffer is destroyed.
*
* The size requested must be at most the buffer size. If the requested size is
* larger than the buffer size, mpack_error_too_big is raised and the
* return value is undefined.
*
* The reader will move data around in the buffer if needed to ensure that
* the pointer can always be returned, so it is unlikely to be faster unless
* count is very small compared to the buffer size. If you need to check
* whether a small size is reasonable (for example you intend to handle small and
* large sizes differently), you can call mpack_should_read_bytes_inplace().
*
* As with all read functions, the return value is undefined if the reader
* is in an error state.
*
* @see mpack_should_read_bytes_inplace()
*/
const char* mpack_read_bytes_inplace(mpack_reader_t* reader, size_t count);
/**
* Returns true if it's a good idea to read the given number of bytes
* in-place.
*
* If the read will be larger than some small fraction of the buffer size,
* this will return false to avoid shuffling too much data back and forth
* in the buffer.
*
* Use this if you're expecting arbitrary size data, and you want to read
* in-place where possible but will fall back to a normal read if the data
* is too large.
*
* @see mpack_read_bytes_inplace()
*/
MPACK_INLINE_SPEED bool mpack_should_read_bytes_inplace(mpack_reader_t* reader, size_t count);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED bool mpack_should_read_bytes_inplace(mpack_reader_t* reader, size_t count) {
return (reader->size == 0 || count > reader->size / 8);
}
#endif
#if MPACK_READ_TRACKING
/**
* Finishes reading an array.
*
* This will track reads to ensure that the correct number of elements are read.
*/
void mpack_done_array(mpack_reader_t* reader);
/**
* @fn mpack_done_map(mpack_reader_t* reader)
*
* Finishes reading a map.
*
* This will track reads to ensure that the correct number of elements are read.
*/
void mpack_done_map(mpack_reader_t* reader);
/**
* @fn mpack_done_str(mpack_reader_t* reader)
*
* Finishes reading a string.
*
* This will track reads to ensure that the correct number of bytes are read.
*/
void mpack_done_str(mpack_reader_t* reader);
/**
* @fn mpack_done_bin(mpack_reader_t* reader)
*
* Finishes reading a binary data blob.
*
* This will track reads to ensure that the correct number of bytes are read.
*/
void mpack_done_bin(mpack_reader_t* reader);
/**
* @fn mpack_done_ext(mpack_reader_t* reader)
*
* Finishes reading an extended type binary data blob.
*
* This will track reads to ensure that the correct number of bytes are read.
*/
void mpack_done_ext(mpack_reader_t* reader);
/**
* Finishes reading the given type.
*
* This will track reads to ensure that the correct number of elements
* or bytes are read.
*/
void mpack_done_type(mpack_reader_t* reader, mpack_type_t type);
#else
MPACK_INLINE void mpack_done_array(mpack_reader_t* reader) {MPACK_UNUSED(reader);}
MPACK_INLINE void mpack_done_map(mpack_reader_t* reader) {MPACK_UNUSED(reader);}
MPACK_INLINE void mpack_done_str(mpack_reader_t* reader) {MPACK_UNUSED(reader);}
MPACK_INLINE void mpack_done_bin(mpack_reader_t* reader) {MPACK_UNUSED(reader);}
MPACK_INLINE void mpack_done_ext(mpack_reader_t* reader) {MPACK_UNUSED(reader);}
MPACK_INLINE void mpack_done_type(mpack_reader_t* reader, mpack_type_t type) {MPACK_UNUSED(reader); MPACK_UNUSED(type);}
#endif
/**
* Reads and discards the next object. This will read and discard all
* contained data as well if it is a compound type.
*/
void mpack_discard(mpack_reader_t* reader);
#if MPACK_DEBUG && MPACK_STDIO && !MPACK_NO_PRINT
/*! Converts a chunk of messagepack to JSON and pretty-prints it to stdout. */
void mpack_debug_print(const char* data, int len);
#endif
/**
* @}
*/
#if MPACK_INTERNAL
void mpack_read_native_big(mpack_reader_t* reader, char* p, size_t count);
// Reads count bytes into p, deferring to mpack_read_native_big() if more
// bytes are needed than are available in the buffer.
MPACK_INLINE_SPEED void mpack_read_native(mpack_reader_t* reader, char* p, size_t count);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_read_native(mpack_reader_t* reader, char* p, size_t count) {
if (count > reader->left) {
mpack_read_native_big(reader, p, count);
} else {
mpack_memcpy(p, reader->buffer + reader->pos, count);
reader->pos += count;
reader->left -= count;
}
}
#endif
// Reads native bytes with error callback disabled. This allows mpack reader functions
// to hold an allocated buffer and read native data into it without leaking it in
// case of a non-local jump out of an error handler.
MPACK_INLINE_SPEED void mpack_read_native_nojump(mpack_reader_t* reader, char* p, size_t count);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_read_native_nojump(mpack_reader_t* reader, char* p, size_t count) {
mpack_reader_error_t error_fn = reader->error_fn;
reader->error_fn = NULL;
mpack_read_native(reader, p, count);
reader->error_fn = error_fn;
}
#endif
MPACK_ALWAYS_INLINE uint8_t mpack_read_native_u8(mpack_reader_t* reader) {
if (reader->left >= sizeof(uint8_t)) {
uint8_t ret = mpack_load_native_u8(reader->buffer + reader->pos);
reader->pos += sizeof(uint8_t);
reader->left -= sizeof(uint8_t);
return ret;
}
char c[sizeof(uint8_t)];
mpack_read_native_big(reader, c, sizeof(c));
return mpack_load_native_u8(c);
}
MPACK_ALWAYS_INLINE uint16_t mpack_read_native_u16(mpack_reader_t* reader) {
if (reader->left >= sizeof(uint16_t)) {
uint16_t ret = mpack_load_native_u16(reader->buffer + reader->pos);
reader->pos += sizeof(uint16_t);
reader->left -= sizeof(uint16_t);
return ret;
}
char c[sizeof(uint16_t)];
mpack_read_native_big(reader, c, sizeof(c));
return mpack_load_native_u16(c);
}
MPACK_ALWAYS_INLINE uint32_t mpack_read_native_u32(mpack_reader_t* reader) {
if (reader->left >= sizeof(uint32_t)) {
uint32_t ret = mpack_load_native_u32(reader->buffer + reader->pos);
reader->pos += sizeof(uint32_t);
reader->left -= sizeof(uint32_t);
return ret;
}
char c[sizeof(uint32_t)];
mpack_read_native_big(reader, c, sizeof(c));
return mpack_load_native_u32(c);
}
MPACK_ALWAYS_INLINE uint64_t mpack_read_native_u64(mpack_reader_t* reader) {
if (reader->left >= sizeof(uint64_t)) {
uint64_t ret = mpack_load_native_u64(reader->buffer + reader->pos);
reader->pos += sizeof(uint64_t);
reader->left -= sizeof(uint64_t);
return ret;
}
char c[sizeof(uint64_t)];
mpack_read_native_big(reader, c, sizeof(c));
return mpack_load_native_u64(c);
}
MPACK_ALWAYS_INLINE int8_t mpack_read_native_i8 (mpack_reader_t* reader) {return (int8_t) mpack_read_native_u8 (reader);}
MPACK_ALWAYS_INLINE int16_t mpack_read_native_i16 (mpack_reader_t* reader) {return (int16_t)mpack_read_native_u16 (reader);}
MPACK_ALWAYS_INLINE int32_t mpack_read_native_i32 (mpack_reader_t* reader) {return (int32_t)mpack_read_native_u32 (reader);}
MPACK_ALWAYS_INLINE int64_t mpack_read_native_i64 (mpack_reader_t* reader) {return (int64_t)mpack_read_native_u64 (reader);}
MPACK_ALWAYS_INLINE float mpack_read_native_float(mpack_reader_t* reader) {
union {
float f;
uint32_t i;
} u;
u.i = mpack_read_native_u32(reader);
return u.f;
}
MPACK_ALWAYS_INLINE double mpack_read_native_double(mpack_reader_t* reader) {
union {
double d;
uint64_t i;
} u;
u.i = mpack_read_native_u64(reader);
return u.d;
}
#if MPACK_READ_TRACKING
#define MPACK_READER_TRACK(reader, error) mpack_reader_flag_if_error((reader), (error))
#else
#define MPACK_READER_TRACK(reader, error) (MPACK_UNUSED(reader), mpack_ok)
#endif
MPACK_INLINE_SPEED mpack_error_t mpack_reader_track_element(mpack_reader_t* reader);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED mpack_error_t mpack_reader_track_element(mpack_reader_t* reader) {
return MPACK_READER_TRACK(reader, mpack_track_element(&reader->track, true));
}
#endif
MPACK_INLINE_SPEED mpack_error_t mpack_reader_track_bytes(mpack_reader_t* reader, uint64_t count);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED mpack_error_t mpack_reader_track_bytes(mpack_reader_t* reader, uint64_t count) {
MPACK_UNUSED(count);
return MPACK_READER_TRACK(reader, mpack_track_bytes(&reader->track, true, count));
}
#endif
#endif
#ifdef __cplusplus
}
#endif
#endif
#endif
/* mpack-expect.h */
/**
* @file
*
* Declares the MPack static Expect API.
*/
#ifndef MPACK_EXPECT_H
#define MPACK_EXPECT_H 1
/* #include "mpack-reader.h" */
#if MPACK_EXPECT
#if !MPACK_READER
#error "MPACK_EXPECT requires MPACK_READER."
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup expect Expect API
*
* The MPack Expect API allows you to easily read MessagePack data when you
* expect it to follow a predefined schema.
*
* The main purpose of the Expect API is convenience, so the API is lax. It
* allows overlong / inefficiently encoded sequences, and it automatically
* converts between similar types where there is no loss of precision (unless
* otherwise noted.) It will convert from unsigned to signed or from float to
* double for example.
*
* When using any of the expect functions, if the type or value of what was
* read does not match what is expected, @ref mpack_error_type is raised.
*
* @{
*/
/**
* @name Basic Number Functions
* @{
*/
/**
* Reads an 8-bit unsigned integer.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in an 8-bit unsigned int.
*
* Returns zero if an error occurs.
*/
uint8_t mpack_expect_u8(mpack_reader_t* reader);
/**
* Reads a 16-bit unsigned integer.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 16-bit unsigned int.
*
* Returns zero if an error occurs.
*/
uint16_t mpack_expect_u16(mpack_reader_t* reader);
/**
* Reads a 32-bit unsigned integer.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 32-bit unsigned int.
*
* Returns zero if an error occurs.
*/
uint32_t mpack_expect_u32(mpack_reader_t* reader);
/**
* Reads a 64-bit unsigned integer.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 64-bit unsigned int.
*
* Returns zero if an error occurs.
*/
uint64_t mpack_expect_u64(mpack_reader_t* reader);
/**
* Reads an 8-bit signed integer.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in an 8-bit signed int.
*
* Returns zero if an error occurs.
*/
int8_t mpack_expect_i8(mpack_reader_t* reader);
/**
* Reads a 16-bit signed integer.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 16-bit signed int.
*
* Returns zero if an error occurs.
*/
int16_t mpack_expect_i16(mpack_reader_t* reader);
/**
* Reads a 32-bit signed integer.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 32-bit signed int.
*
* Returns zero if an error occurs.
*/
int32_t mpack_expect_i32(mpack_reader_t* reader);
/**
* Reads a 64-bit signed integer.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 64-bit signed int.
*
* Returns zero if an error occurs.
*/
int64_t mpack_expect_i64(mpack_reader_t* reader);
/**
* Reads a number, returning the value as a float. The underlying value can be an
* integer, float or double; the value is converted to a float.
*
* Note that reading a double or a large integer with this function can incur a
* loss of precision.
*
* @throws mpack_error_type if the underlying value is not a float, double or integer.
*/
float mpack_expect_float(mpack_reader_t* reader);
/**
* Reads a number, returning the value as a double. The underlying value can be an
* integer, float or double; the value is converted to a double.
*
* Note that reading a very large integer with this function can incur a
* loss of precision.
*
* @throws mpack_error_type if the underlying value is not a float, double or integer.
*/
double mpack_expect_double(mpack_reader_t* reader);
/**
* Reads a float. The underlying value must be a float, not a double or an integer.
* This ensures no loss of precision can occur.
*
* @throws mpack_error_type if the underlying value is not a float.
*/
float mpack_expect_float_strict(mpack_reader_t* reader);
/**
* Reads a double. The underlying value must be a float or double, not an integer.
* This ensures no loss of precision can occur.
*
* @throws mpack_error_type if the underlying value is not a float or double.
*/
double mpack_expect_double_strict(mpack_reader_t* reader);
/**
* @}
*/
/**
* @name Ranged Number Functions
* @{
*/
/**
* Reads an 8-bit unsigned integer, ensuring that it falls within the given range.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in an 8-bit unsigned int.
*
* Returns min_value if an error occurs.
*/
uint8_t mpack_expect_u8_range(mpack_reader_t* reader, uint8_t min_value, uint8_t max_value);
/**
* Reads a 16-bit unsigned integer, ensuring that it falls within the given range.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 16-bit unsigned int.
*
* Returns min_value if an error occurs.
*/
uint16_t mpack_expect_u16_range(mpack_reader_t* reader, uint16_t min_value, uint16_t max_value);
/**
* Reads a 32-bit unsigned integer, ensuring that it falls within the given range.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 32-bit unsigned int.
*
* Returns min_value if an error occurs.
*/
uint32_t mpack_expect_u32_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value);
/**
* Reads a 64-bit unsigned integer, ensuring that it falls within the given range.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 64-bit unsigned int.
*
* Returns min_value if an error occurs.
*/
uint64_t mpack_expect_u64_range(mpack_reader_t* reader, uint64_t min_value, uint64_t max_value);
MPACK_INLINE uint8_t mpack_expect_u8_max(mpack_reader_t* reader, uint8_t max_value) {
return mpack_expect_u8_range(reader, 0, max_value);
}
MPACK_INLINE uint16_t mpack_expect_u16_max(mpack_reader_t* reader, uint16_t max_value) {
return mpack_expect_u16_range(reader, 0, max_value);
}
MPACK_INLINE uint32_t mpack_expect_u32_max(mpack_reader_t* reader, uint32_t max_value) {
return mpack_expect_u32_range(reader, 0, max_value);
}
MPACK_INLINE uint64_t mpack_expect_u64_max(mpack_reader_t* reader, uint64_t max_value) {
return mpack_expect_u64_range(reader, 0, max_value);
}
/**
* Reads an 8-bit signed integer, ensuring that it falls within the given range.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in an 8-bit signed int.
*
* Returns min_value if an error occurs.
*/
int8_t mpack_expect_i8_range(mpack_reader_t* reader, int8_t min_value, int8_t max_value);
/**
* Reads a 16-bit signed integer, ensuring that it falls within the given range.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 16-bit signed int.
*
* Returns min_value if an error occurs.
*/
int16_t mpack_expect_i16_range(mpack_reader_t* reader, int16_t min_value, int16_t max_value);
/**
* Reads a 32-bit signed integer, ensuring that it falls within the given range.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 32-bit signed int.
*
* Returns min_value if an error occurs.
*/
int32_t mpack_expect_i32_range(mpack_reader_t* reader, int32_t min_value, int32_t max_value);
/**
* Reads a 64-bit signed integer, ensuring that it falls within the given range.
*
* The underlying type may be an integer type of any size and signedness,
* as long as the value can be represented in a 64-bit signed int.
*
* Returns min_value if an error occurs.
*/
int64_t mpack_expect_i64_range(mpack_reader_t* reader, int64_t min_value, int64_t max_value);
/**
* Reads a number, ensuring that it falls within the given range and returning
* the value as a float. The underlying value can be an integer, float or
* double; the value is converted to a float.
*
* Note that reading a double or a large integer with this function can incur a
* loss of precision.
*
* @throws mpack_error_type if the underlying value is not a float, double or integer.
*/
float mpack_expect_float_range(mpack_reader_t* reader, float min_value, float max_value);
/**
* Reads a number, ensuring that it falls within the given range and returning
* the value as a double. The underlying value can be an integer, float or
* double; the value is converted to a double.
*
* Note that reading a very large integer with this function can incur a
* loss of precision.
*
* @throws mpack_error_type if the underlying value is not a float, double or integer.
*/
double mpack_expect_double_range(mpack_reader_t* reader, double min_value, double max_value);
/**
* @}
*/
/**
* @name Matching Number Functions
* @{
*/
/**
* Reads an unsigned integer, ensuring that it exactly matches the given value.
*
* mpack_error_type is raised if the value is not representable as an unsigned
* integer or if it does not exactly match the given value.
*/
void mpack_expect_uint_match(mpack_reader_t* reader, uint64_t value);
/**
* Reads a signed integer, ensuring that it exactly matches the given value.
*
* mpack_error_type is raised if the value is not representable as a signed
* integer or if it does not exactly match the given value.
*/
void mpack_expect_int_match(mpack_reader_t* reader, int64_t value);
/**
* @name Other Basic Types
* @{
*/
/**
* Reads a nil.
*/
void mpack_expect_nil(mpack_reader_t* reader);
/**
* Reads a bool. Note that integers will raise mpack_error_type; the value
* must be strictly a bool.
*/
bool mpack_expect_bool(mpack_reader_t* reader);
/**
* Reads a bool, raising a mpack_error_type if it is not true.
*/
void mpack_expect_true(mpack_reader_t* reader);
/**
* Reads a bool, raising a mpack_error_type if it is not false.
*/
void mpack_expect_false(mpack_reader_t* reader);
/**
* @}
*/
/**
* @name Compound Types
* @{
*/
/**
* Reads the start of a map, returning its element count.
*
* A number of values follow equal to twice the element count of the map,
* alternating between keys and values. @ref mpack_done_map() must be called
* once all elements have been read.
*
* mpack_error_type is raised if the value is not a map.
*
* Note that maps in JSON are unordered, so it is recommended not to expect
* a specific ordering for your map values in case your data is converted
* to/from JSON.
*/
uint32_t mpack_expect_map(mpack_reader_t* reader);
/**
* Reads the start of a map with a number of elements in the given range, returning
* its element count.
*
* A number of values follow equal to twice the element count of the map,
* alternating between keys and values. @ref mpack_done_map() must be called
* once all elements have been read.
*
* mpack_error_type is raised if the value is not a map or if its size does
* not fall within the given range.
*
* Note that maps in JSON are unordered, so it is recommended not to expect
* a specific ordering for your map values in case your data is converted
* to/from JSON.
*/
uint32_t mpack_expect_map_range(mpack_reader_t* reader, uint32_t min_count, uint32_t max_count);
/**
* Reads the start of a map of the exact size given.
*
* A number of values follow equal to twice the element count of the map,
* alternating between keys and values. @ref mpack_done_map() must be called
* once all elements have been read.
*
* @ref mpack_error_type is raised if the value is not a map or if its size
* does not match the given count.
*
* Note that maps in JSON are unordered, so it is recommended not to expect
* a specific ordering for your map values in case your data is converted
* to/from JSON.
*/
void mpack_expect_map_match(mpack_reader_t* reader, uint32_t count);
bool mpack_expect_map_or_nil(mpack_reader_t* reader, uint32_t* count);
/**
* Reads the start of an array, returning its element count.
*
* A number of values follow equal to the element count of the array.
* @ref mpack_done_array() must be called once all elements have been read.
*/
uint32_t mpack_expect_array(mpack_reader_t* reader);
/**
* Reads the start of an array with a number of elements in the given range,
* returning its element count.
*
* A number of values follow equal to the element count of the array.
* @ref mpack_done_array() must be called once all elements have been read.
*
* @throws mpack_error_type if the value is not an array or if its size does
* not fall within the given range.
*/
uint32_t mpack_expect_array_range(mpack_reader_t* reader, uint32_t min_count, uint32_t max_count);
MPACK_INLINE uint32_t mpack_expect_array_max(mpack_reader_t* reader, uint32_t max_count) {
return mpack_expect_array_range(reader, 0, max_count);
}
/**
* Reads the start of an array of the exact size given.
*
* A number of values follow equal to the element count of the array.
* @ref mpack_done_array() must be called once all elements have been read.
*
* @throws mpack_error_type if the value is not an array or if its size does
* not fall within the given range.
*/
void mpack_expect_array_match(mpack_reader_t* reader, uint32_t count);
#ifdef MPACK_MALLOC
/**
* @hideinitializer
*
* Reads the start of an array and allocates storage for it, placing its
* size in count. A number of objects follow equal to the element count
* of the array.
*/
#define mpack_expect_array_alloc(reader, Type, max_count, count) \
((Type*)mpack_expect_array_alloc_impl(reader, sizeof(Type), max_count, count))
#endif
/**
* @}
*/
/** @cond */
#ifdef MPACK_MALLOC
void* mpack_expect_array_alloc_impl(mpack_reader_t* reader,
size_t element_size, uint32_t max_count, size_t* count);
#endif
/** @endcond */
/**
* @name String Functions
* @{
*/
/**
* Reads the start of a string, returning its size in bytes.
*
* The bytes follow and must be read separately with mpack_read_bytes()
* or mpack_read_bytes_inplace(). @ref mpack_done_str() must be called
* once all bytes have been read.
*
* mpack_error_type is raised if the value is not a string.
*/
uint32_t mpack_expect_str(mpack_reader_t* reader);
/**
* Reads a string of at most the given size, writing it into the
* given buffer and returning its size in bytes.
*
* Note that this does not add a null-terminator! No null-terminator
* is written, even if the string fits. Use mpack_expect_cstr() to
* get a null-terminator.
*/
size_t mpack_expect_str_buf(mpack_reader_t* reader, char* buf, size_t bufsize);
/**
* Reads the start of a string, raising an error if its length is not
* at most the given number of bytes (not including any null-terminator.)
*
* The bytes follow and must be read separately with mpack_read_bytes()
* or mpack_read_bytes_inplace(). @ref mpack_done_str() must be called
* once all bytes have been read.
*
* mpack_error_type is raised if the value is not a string or if its
* length does not match.
*/
MPACK_INLINE_SPEED void mpack_expect_str_max(mpack_reader_t* reader, uint32_t maxsize);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_expect_str_max(mpack_reader_t* reader, uint32_t maxsize) {
if (mpack_expect_str(reader) > maxsize)
mpack_reader_flag_error(reader, mpack_error_type);
}
#endif
/**
* Reads the start of a string, raising an error if its length is not
* exactly the given number of bytes (not including any null-terminator.)
*
* The bytes follow and must be read separately with mpack_read_bytes()
* or mpack_read_bytes_inplace(). @ref mpack_done_str() must be called
* once all bytes have been read.
*
* mpack_error_type is raised if the value is not a string or if its
* length does not match.
*/
MPACK_INLINE_SPEED void mpack_expect_str_length(mpack_reader_t* reader, uint32_t count);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_expect_str_length(mpack_reader_t* reader, uint32_t count) {
if (mpack_expect_str(reader) != count)
mpack_reader_flag_error(reader, mpack_error_type);
}
#endif
/**
* Reads a string with the given total maximum size, allocating storage for it.
* A null-terminator will be added to the string. The length in bytes of the string,
* not including the null-terminator, will be written to size.
*/
char* mpack_expect_str_alloc(mpack_reader_t* reader, size_t maxsize, size_t* size);
/**
* Reads a string with the given total maximum size, allocating storage for it
* and ensuring it is valid UTF-8. A null-terminator will be added to the string.
* The length in bytes of the string, not including the null-terminator,
* will be written to size.
*/
char* mpack_expect_utf8_alloc(mpack_reader_t* reader, size_t maxsize, size_t* size);
/**
* Reads a string into the given buffer, ensures it has no null-bytes,
* and adds null-terminator at the end.
*
* Raises mpack_error_too_big if there is not enough room for the string and null-terminator.
* Raises mpack_error_type if the value is not a string or contains a null byte.
*/
void mpack_expect_cstr(mpack_reader_t* reader, char* buf, size_t size);
/**
* Reads a string into the given buffer, ensures it is a valid UTF-8 string,
* and adds null-terminator at the end.
*
* Raises mpack_error_too_big if there is not enough room for the string and null-terminator.
* Raises mpack_error_type if the value is not a string or is not a valid UTF-8 string.
*/
void mpack_expect_utf8_cstr(mpack_reader_t* reader, char* buf, size_t size);
#ifdef MPACK_MALLOC
/**
* Reads a string, allocates storage for it, ensures it has no null-bytes,
* and adds null-terminator at the end. You assume ownership of the
* returned pointer if reading succeeds.
*
* Raises mpack_error_too_big if the string plus null-terminator is larger than the given maxsize.
* Raises mpack_error_invalid if the value is not a string or contains a null byte.
*/
char* mpack_expect_cstr_alloc(mpack_reader_t* reader, size_t maxsize);
#endif
/**
* Reads a string, ensuring it exactly matches the given null-terminated
* string.
*
* Remember that maps are unordered in JSON. Don't use this for map keys
* unless the map has only a single key!
*/
void mpack_expect_cstr_match(mpack_reader_t* reader, const char* str);
/**
* @}
*/
/**
* @name Binary Data / Extension Functions
* @{
*/
/**
* Reads the start of a binary blob, returning its size in bytes.
*
* The bytes follow and must be read separately with mpack_read_bytes()
* or mpack_read_bytes_inplace(). @ref mpack_done_bin() must be called
* once all bytes have been read.
*
* mpack_error_type is raised if the value is not a binary blob.
*/
uint32_t mpack_expect_bin(mpack_reader_t* reader);
/**
* Reads the start of a binary blob, raising an error if its length is not
* at most the given number of bytes.
*
* The bytes follow and must be read separately with mpack_read_bytes()
* or mpack_read_bytes_inplace(). @ref mpack_done_bin() must be called
* once all bytes have been read.
*
* mpack_error_type is raised if the value is not a binary blob or if its
* length does not match.
*/
MPACK_INLINE_SPEED void mpack_expect_bin_max(mpack_reader_t* reader, uint32_t maxsize);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_expect_bin_max(mpack_reader_t* reader, uint32_t maxsize) {
if (mpack_expect_str(reader) > maxsize)
mpack_reader_flag_error(reader, mpack_error_type);
}
#endif
/**
* Reads the start of a binary blob, raising an error if its length is not
* exactly the given number of bytes.
*
* The bytes follow and must be read separately with mpack_read_bytes()
* or mpack_read_bytes_inplace(). @ref mpack_done_bin() must be called
* once all bytes have been read.
*
* mpack_error_type is raised if the value is not a binary blob or if its
* length does not match.
*/
MPACK_INLINE_SPEED void mpack_expect_bin_size(mpack_reader_t* reader, uint32_t count);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_expect_bin_size(mpack_reader_t* reader, uint32_t count) {
if (mpack_expect_str(reader) != count)
mpack_reader_flag_error(reader, mpack_error_type);
}
#endif
/**
* Reads a binary blob into the given buffer, returning its size in bytes.
*
* For compatibility, this will accept if the underlying type is string or
* binary (since in MessagePack 1.0, strings and binary data were combined
* under the "raw" type which became string in 1.1.)
*/
size_t mpack_expect_bin_buf(mpack_reader_t* reader, char* buf, size_t size);
const char* mpack_expect_bin_inplace(mpack_reader_t* reader, size_t maxsize, size_t* size);
/**
* Reads a binary blob with the given total maximum size, allocating storage for it.
*/
char* mpack_expect_bin_alloc(mpack_reader_t* reader, size_t maxsize, size_t* size);
/**
* Reads an extension object with the given total maximum size, allocating storage
* for it. The extension type will be written to exttype, and the size will be
* written to size.
*/
char* mpack_expect_ext_alloc(mpack_reader_t* reader, size_t maxsize, uint8_t* exttype, size_t* size);
/**
* Reads an extension object of the given type with the given total maximum size,
* allocating storage for it. The size will be written to size.
*/
char* mpack_expect_ext_type_alloc(mpack_reader_t* reader, uint8_t exttype, size_t maxsize, size_t* size);
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif
#endif
/* mpack-node.h */
/**
* @file
*
* Declares the MPack dynamic Node API.
*/
#ifndef MPACK_NODE_H
#define MPACK_NODE_H 1
/* #include "mpack-reader.h" */
#if MPACK_NODE
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup node Node API
*
* The MPack Node API allows you to parse a chunk of MessagePack data
* in-place into a dynamically typed data structure.
*
* @{
*/
/**
* A handle to node in a parsed MPack tree. Note that mpack_node_t is passed by value.
*
* Nodes represent either primitive values or compound types. If a
* node is a compound type, it contains a link to its child nodes, or
* a pointer to its underlying data.
*
* Nodes are immutable.
*/
typedef struct mpack_node_t mpack_node_t;
/**
* The storage for nodes in an MPack tree.
*
* You only need to use this if you intend to provide your own storage
* for nodes instead of letting the tree allocate it.
*/
typedef struct mpack_node_data_t mpack_node_data_t;
/**
* An MPack tree parsed from a blob of MessagePack.
*
* The tree contains a single root node which contains all parsed data.
* The tree and its nodes are immutable.
*/
typedef struct mpack_tree_t mpack_tree_t;
/**
* An error handler function to be called when an error is flagged on
* the tree.
*
* The error handler will only be called once on the first error flagged;
* any subsequent node reads and errors are ignored, and the tree is
* permanently in that error state.
*
* MPack is safe against non-local jumps out of error handler callbacks.
* This means you are allowed to longjmp or throw an exception (in C++
* or with SEH) out of this callback.
*
* Bear in mind when using longjmp that local non-volatile variables that
* have changed are undefined when setjmp() returns, so you can't put the
* tree on the stack in the same activation frame as the setjmp without
* declaring it volatile.)
*
* You must still eventually destroy the tree. It is not destroyed
* automatically when an error is flagged. It is safe to destroy the
* tree within this error callback, but you will either need to perform
* a non-local jump, or store something in your context to identify
* that the tree is destroyed since any future accesses to it cause
* undefined behavior.
*/
typedef void (*mpack_tree_error_t)(mpack_tree_t* tree, mpack_error_t error);
/**
* A teardown function to be called when the tree is destroyed.
*/
typedef void (*mpack_tree_teardown_t)(mpack_tree_t* tree);
/* Hide internals from documentation */
/** @cond */
/*
* mpack_tree_link_t forms a linked list of node pages. It is allocated
* separately from the page so that we can store the first link internally
* without a malloc (the only link in a pooled tree), and we don't
* affect the size of page pools or violate strict aliasing.
*/
typedef struct mpack_tree_link_t {
struct mpack_tree_link_t* next;
mpack_node_data_t* nodes;
size_t pos;
size_t left;
} mpack_tree_link_t;
struct mpack_node_t {
mpack_node_data_t* data;
mpack_tree_t* tree;
};
struct mpack_node_data_t {
mpack_type_t type;
int8_t exttype; /**< \internal The extension type if the type is mpack_type_ext. */
/* The value for non-compound types. */
union
{
bool b; /* The value if the type is bool. */
float f; /* The value if the type is float. */
double d; /* The value if the type is double. */
int64_t i; /* The value if the type is signed int. */
uint64_t u; /* The value if the type is unsigned int. */
struct {
uint32_t l; /* The number of bytes if the type is str, bin or ext. */
const char* bytes;
} data;
struct {
/* The element count if the type is an array, or the number of
key/value pairs if the type is map. */
uint32_t n;
mpack_node_data_t* children;
} content;
} value;
};
struct mpack_tree_t {
mpack_tree_error_t error_fn; /* Function to call on error */
mpack_tree_teardown_t teardown; /* Function to teardown the context on destroy */
void* context; /* Context for tree callbacks */
mpack_node_data_t nil_node; /* a nil node to be returned in case of error */
mpack_error_t error;
size_t node_count;
size_t size;
mpack_node_data_t* root;
mpack_tree_link_t page;
#ifdef MPACK_MALLOC
bool owned;
#endif
};
// internal functions
MPACK_INLINE mpack_node_t mpack_node(mpack_tree_t* tree, mpack_node_data_t* data) {
mpack_node_t node;
node.data = data;
node.tree = tree;
return node;
}
MPACK_INLINE mpack_node_data_t* mpack_node_child(mpack_node_t node, size_t child) {
return node.data->value.content.children + child;
}
MPACK_INLINE mpack_node_t mpack_tree_nil_node(mpack_tree_t* tree) {
return mpack_node(tree, &tree->nil_node);
}
/** @endcond */
/**
* @name Tree Functions
* @{
*/
#ifdef MPACK_MALLOC
/**
* Initializes a tree by parsing the given data buffer. The tree must be destroyed
* with mpack_tree_destroy(), even if parsing fails.
*
* The tree will allocate pages of nodes as needed, and free them when destroyed.
*
* Any string or blob data types reference the original data, so the data
* pointer must remain valid until after the tree is destroyed.
*/
void mpack_tree_init(mpack_tree_t* tree, const char* data, size_t length);
#endif
/**
* Initializes a tree by parsing the given data buffer, using the given
* node data pool to store the results.
*
* If the data does not fit in the pool, mpack_error_too_big will be flagged
* on the tree.
*
* The tree must be destroyed with mpack_tree_destroy(), even if parsing fails.
*/
void mpack_tree_init_pool(mpack_tree_t* tree, const char* data, size_t length, mpack_node_data_t* node_pool, size_t node_pool_count);
/**
* Initializes an mpack tree directly into an error state. Use this if you
* are writing a wrapper to mpack_tree_init() which can fail its setup.
*/
void mpack_tree_init_error(mpack_tree_t* tree, mpack_error_t error);
#if MPACK_STDIO
/**
* Initializes a tree by reading and parsing the given file. The tree must be
* destroyed with mpack_tree_destroy(), even if parsing fails.
*
* The file is opened, loaded fully into memory, and closed before this call
* returns.
*
* @param tree The tree to initialize
* @param filename The filename passed to fopen() to read the file
* @param max_bytes The maximum size of file to load, or 0 for unlimited size.
*/
void mpack_tree_init_file(mpack_tree_t* tree, const char* filename, size_t max_bytes);
#endif
/**
* Returns the root node of the tree, if the tree is not in an error state.
* Returns a nil node otherwise.
*/
mpack_node_t mpack_tree_root(mpack_tree_t* tree);
/**
* Returns the error state of the tree.
*/
MPACK_INLINE mpack_error_t mpack_tree_error(mpack_tree_t* tree) {
return tree->error;
}
/**
* Returns the number of bytes used in the buffer when the tree was
* parsed. If there is something in the buffer after the MessagePack
* object (such as another object), this can be used to find it.
*/
MPACK_INLINE size_t mpack_tree_size(mpack_tree_t* tree) {
return tree->size;
}
/**
* Destroys the tree.
*/
mpack_error_t mpack_tree_destroy(mpack_tree_t* tree);
/**
* Sets the custom pointer to pass to the tree callbacks, such as teardown.
*
* @param tree The MPack tree.
* @param context User data to pass to the tree callbacks.
*/
MPACK_INLINE void mpack_tree_set_context(mpack_tree_t* tree, void* context) {
tree->context = context;
}
/**
* Sets the error function to call when an error is flagged on the tree.
*
* This should normally be used with mpack_tree_set_context() to register
* a custom pointer to pass to the error function.
*
* See the definition of mpack_tree_error_t for more information about
* what you can do from an error callback.
*
* @see mpack_tree_error_t
* @param tree The MPack tree.
* @param error The function to call when an error is flagged on the tree.
*/
MPACK_INLINE void mpack_tree_set_error_handler(mpack_tree_t* tree, mpack_tree_error_t error_fn) {
tree->error_fn = error_fn;
}
/**
* Sets the teardown function to call when the tree is destroyed.
*
* This should normally be used with mpack_tree_set_context() to register
* a custom pointer to pass to the teardown function.
*
* @param tree The MPack tree.
* @param teardown The function to call when the tree is destroyed.
*/
MPACK_INLINE void mpack_tree_set_teardown(mpack_tree_t* tree, mpack_tree_teardown_t teardown) {
tree->teardown = teardown;
}
/**
* Places the tree in the given error state, jumping if a jump target is set.
*
* This allows you to externally flag errors, for example if you are validating
* data as you read it.
*
* If the tree is already in an error state, this call is ignored and no jump
* is performed.
*/
void mpack_tree_flag_error(mpack_tree_t* tree, mpack_error_t error);
/**
* Places the node's tree in the given error state, jumping if a jump target is set.
*
* This allows you to externally flag errors, for example if you are validating
* data as you read it.
*
* If the tree is already in an error state, this call is ignored and no jump
* is performed.
*/
void mpack_node_flag_error(mpack_node_t node, mpack_error_t error);
/**
* @}
*/
/**
* @name Node Core Functions
* @{
*/
/**
* Returns the error state of the node's tree.
*/
MPACK_INLINE mpack_error_t mpack_node_error(mpack_node_t node) {
return mpack_tree_error(node.tree);
}
/**
* Returns a tag describing the given node.
*/
mpack_tag_t mpack_node_tag(mpack_node_t node);
#if MPACK_DEBUG && MPACK_STDIO && !MPACK_NO_PRINT
/**
* Converts a node to JSON and pretty-prints it to stdout.
*
* This function is only available in debugging mode.
*/
void mpack_node_print(mpack_node_t node);
#endif
/**
* @}
*/
/**
* @name Node Primitive Value Functions
* @{
*/
/**
* Returns the type of the node.
*/
MPACK_INLINE_SPEED mpack_type_t mpack_node_type(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED mpack_type_t mpack_node_type(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return mpack_type_nil;
return node.data->type;
}
#endif
/**
* Checks if the given node is of nil type, raising mpack_error_type otherwise.
*/
MPACK_INLINE_SPEED void mpack_node_nil(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_node_nil(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return;
if (node.data->type != mpack_type_nil)
mpack_node_flag_error(node, mpack_error_type);
}
#endif
/**
* Returns the bool value of the node. If this node is not of the correct
* type, mpack_error_type is raised, and the return value should be discarded.
*/
MPACK_INLINE_SPEED bool mpack_node_bool(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED bool mpack_node_bool(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return false;
if (node.data->type == mpack_type_bool)
return node.data->value.b;
mpack_node_flag_error(node, mpack_error_type);
return false;
}
#endif
/**
* Checks if the given node is of bool type with value true, raising
* mpack_error_type otherwise.
*/
MPACK_INLINE_SPEED void mpack_node_true(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_node_true(mpack_node_t node) {
if (mpack_node_bool(node) != true)
mpack_node_flag_error(node, mpack_error_type);
}
#endif
/**
* Checks if the given node is of bool type with value false, raising
* mpack_error_type otherwise.
*/
MPACK_INLINE_SPEED void mpack_node_false(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED void mpack_node_false(mpack_node_t node) {
if (mpack_node_bool(node) != false)
mpack_node_flag_error(node, mpack_error_type);
}
#endif
/**
* Returns the 8-bit unsigned value of the node. If this node is not
* of a compatible type, mpack_error_type is raised, and the
* return value should be discarded.
*/
MPACK_INLINE_SPEED uint8_t mpack_node_u8(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED uint8_t mpack_node_u8(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= UINT8_MAX)
return (uint8_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= 0 && node.data->value.i <= UINT8_MAX)
return (uint8_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the 8-bit signed value of the node. If this node is not
* of a compatible type, mpack_error_type is raised, and the
* return value should be discarded.
*/
MPACK_INLINE_SPEED int8_t mpack_node_i8(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED int8_t mpack_node_i8(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= INT8_MAX)
return (int8_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= INT8_MIN && node.data->value.i <= INT8_MAX)
return (int8_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the 16-bit unsigned value of the node. If this node is not
* of a compatible type, mpack_error_type is raised, and the
* return value should be discarded.
*/
MPACK_INLINE_SPEED uint16_t mpack_node_u16(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED uint16_t mpack_node_u16(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= UINT16_MAX)
return (uint16_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= 0 && node.data->value.i <= UINT16_MAX)
return (uint16_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the 16-bit signed value of the node. If this node is not
* of a compatible type, mpack_error_type is raised, and the
* return value should be discarded.
*/
MPACK_INLINE_SPEED int16_t mpack_node_i16(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED int16_t mpack_node_i16(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= INT16_MAX)
return (int16_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= INT16_MIN && node.data->value.i <= INT16_MAX)
return (int16_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the 32-bit unsigned value of the node. If this node is not
* of a compatible type, mpack_error_type is raised, and the
* return value should be discarded.
*/
MPACK_INLINE_SPEED uint32_t mpack_node_u32(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED uint32_t mpack_node_u32(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= UINT32_MAX)
return (uint32_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= 0 && node.data->value.i <= UINT32_MAX)
return (uint32_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the 32-bit signed value of the node. If this node is not
* of a compatible type, mpack_error_type is raised, and the
* return value should be discarded.
*/
MPACK_INLINE_SPEED int32_t mpack_node_i32(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED int32_t mpack_node_i32(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= INT32_MAX)
return (int32_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= INT32_MIN && node.data->value.i <= INT32_MAX)
return (int32_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the 64-bit unsigned value of the node. If this node is not
* of a compatible type, mpack_error_type is raised, and the
* return value should be discarded.
*/
MPACK_INLINE_SPEED uint64_t mpack_node_u64(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED uint64_t mpack_node_u64(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
return node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= 0)
return (uint64_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the 64-bit signed value of the node. If this node is not
* of a compatible type, mpack_error_type is raised, and the
* return value should be discarded.
*/
MPACK_INLINE_SPEED int64_t mpack_node_i64(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED int64_t mpack_node_i64(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= (uint64_t)INT64_MAX)
return (int64_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
return node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the float value of the node. The underlying value can be an
* integer, float or double; the value is converted to a float.
*
* Note that reading a double or a large integer with this function can incur a
* loss of precision.
*
* @throws mpack_error_type if the underlying value is not a float, double or integer.
*/
MPACK_INLINE_SPEED float mpack_node_float(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED float mpack_node_float(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0.0f;
if (node.data->type == mpack_type_uint)
return (float)node.data->value.u;
else if (node.data->type == mpack_type_int)
return (float)node.data->value.i;
else if (node.data->type == mpack_type_float)
return node.data->value.f;
else if (node.data->type == mpack_type_double)
return (float)node.data->value.d;
mpack_node_flag_error(node, mpack_error_type);
return 0.0f;
}
#endif
/**
* Returns the double value of the node. The underlying value can be an
* integer, float or double; the value is converted to a double.
*
* Note that reading a very large integer with this function can incur a
* loss of precision.
*
* @throws mpack_error_type if the underlying value is not a float, double or integer.
*/
MPACK_INLINE_SPEED double mpack_node_double(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED double mpack_node_double(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0.0;
if (node.data->type == mpack_type_uint)
return (double)node.data->value.u;
else if (node.data->type == mpack_type_int)
return (double)node.data->value.i;
else if (node.data->type == mpack_type_float)
return (double)node.data->value.f;
else if (node.data->type == mpack_type_double)
return node.data->value.d;
mpack_node_flag_error(node, mpack_error_type);
return 0.0;
}
#endif
/**
* Returns the float value of the node. The underlying value must be a float,
* not a double or an integer. This ensures no loss of precision can occur.
*
* @throws mpack_error_type if the underlying value is not a float.
*/
MPACK_INLINE_SPEED float mpack_node_float_strict(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED float mpack_node_float_strict(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0.0f;
if (node.data->type == mpack_type_float)
return node.data->value.f;
mpack_node_flag_error(node, mpack_error_type);
return 0.0f;
}
#endif
/**
* Returns the double value of the node. The underlying value must be a float
* or double, not an integer. This ensures no loss of precision can occur.
*
* @throws mpack_error_type if the underlying value is not a float or double.
*/
MPACK_INLINE_SPEED double mpack_node_double_strict(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED double mpack_node_double_strict(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0.0;
if (node.data->type == mpack_type_float)
return (double)node.data->value.f;
else if (node.data->type == mpack_type_double)
return node.data->value.d;
mpack_node_flag_error(node, mpack_error_type);
return 0.0;
}
#endif
/**
* @}
*/
/**
* @name Node Data Functions
* @{
*/
/**
* Returns the extension type of the given ext node.
*/
MPACK_INLINE_SPEED int8_t mpack_node_exttype(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED int8_t mpack_node_exttype(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_ext)
return node.data->exttype;
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the length of the given str, bin or ext node.
*/
MPACK_INLINE_SPEED size_t mpack_node_data_len(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED size_t mpack_node_data_len(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
mpack_type_t type = node.data->type;
if (type == mpack_type_str || type == mpack_type_bin || type == mpack_type_ext)
return (size_t)node.data->value.data.l;
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns the length in bytes of the given string node. This does not
* include any null-terminator.
*/
MPACK_INLINE_SPEED size_t mpack_node_strlen(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED size_t mpack_node_strlen(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_str)
return (size_t)node.data->value.data.l;
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
/**
* Returns a pointer to the data contained by this node.
*
* Note that strings are not null-terminated! Use mpack_node_copy_cstr() or
* mpack_node_cstr_alloc() to get a null-terminated string.
*
* The pointer is valid as long as the data backing the tree is valid.
*
* If this node is not of a str, bin or map, mpack_error_type is raised, and
* NULL is returned.
*/
MPACK_INLINE_SPEED const char* mpack_node_data(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED const char* mpack_node_data(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
mpack_type_t type = node.data->type;
if (type == mpack_type_str || type == mpack_type_bin || type == mpack_type_ext)
return node.data->value.data.bytes;
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
#endif
/**
* Copies the bytes contained by this node into the given buffer, returning the
* number of bytes in the node.
*
* If this node is not of a str, bin or map, mpack_error_type is raised, and the
* buffer and return value should be discarded. If the node's data does not fit
* in the given buffer, mpack_error_data is raised, and the buffer and return value
* should be discarded.
*
* @param node The string node from which to copy data
* @param buffer A buffer in which to copy the node's bytes
* @param size The size of the given buffer
*/
size_t mpack_node_copy_data(mpack_node_t node, char* buffer, size_t size);
/**
* Copies the bytes contained by this string node into the given buffer and adds
* a null terminator. If this node is not of a string type, mpack_error_type is raised,
* and the buffer should be discarded. If the string does not fit, mpack_error_data is
* raised, and the buffer should be discarded.
*
* If this node is not of a string type, mpack_error_type is raised, and the
* buffer and return value should be discarded. If the string and null-terminator
* do not fit in the given buffer, mpack_error_data is raised, and the buffer and
* return value should be discarded.
*
* @param node The string node from which to copy data
* @param buffer A buffer in which to copy the node's string
* @param size The size of the given buffer
*/
void mpack_node_copy_cstr(mpack_node_t node, char* buffer, size_t size);
#ifdef MPACK_MALLOC
/**
* Allocates a new chunk of data using MPACK_MALLOC with the bytes
* contained by this node. The returned string should be freed with MPACK_FREE.
*
* If this node is not a str, bin or ext type, mpack_error_type is raised
* and the return value should be discarded. If the string and null-terminator
* are longer than the given maximum length, mpack_error_too_big is raised, and
* the return value should be discarded. If an allocation failure occurs,
* mpack_error_memory is raised and the return value should be discarded.
*/
char* mpack_node_data_alloc(mpack_node_t node, size_t maxlen);
/**
* Allocates a new null-terminated string using MPACK_MALLOC with the string
* contained by this node. The returned string should be freed with MPACK_FREE.
*
* If this node is not a string type, mpack_error_type is raised, and the return
* value should be discarded.
*/
char* mpack_node_cstr_alloc(mpack_node_t node, size_t maxlen);
#endif
/**
* @}
*/
/**
* @name Compound Node Functions
* @{
*/
// internal implementation of map key lookup functions to support optional flag
mpack_node_t mpack_node_map_str_impl(mpack_node_t node, const char* str, size_t length, bool optional);
mpack_node_t mpack_node_map_int_impl(mpack_node_t node, int64_t num, bool optional);
mpack_node_t mpack_node_map_uint_impl(mpack_node_t node, uint64_t num, bool optional);
/**
* Returns the length of the given array node. Raises mpack_error_type
* and returns 0 if the given node is not an array.
*/
MPACK_INLINE_SPEED size_t mpack_node_array_length(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED size_t mpack_node_array_length(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type != mpack_type_array) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
return (size_t)node.data->value.content.n;
}
#endif
/**
* Returns the node in the given array at the given index. If the node
* is not an array, mpack_error_type is raised and a nil node is returned.
* If the given index is out of bounds, mpack_error_data is raised and
* a nil node is returned.
*/
MPACK_INLINE_SPEED mpack_node_t mpack_node_array_at(mpack_node_t node, size_t index);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED mpack_node_t mpack_node_array_at(mpack_node_t node, size_t index) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_array) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
if (index >= node.data->value.content.n) {
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
return mpack_node(node.tree, mpack_node_child(node, index));
}
#endif
/**
* Returns the number of key/value pairs in the given map node. Raises
* mpack_error_type and returns 0 if the given node is not a map.
*/
MPACK_INLINE_SPEED size_t mpack_node_map_count(mpack_node_t node);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED size_t mpack_node_map_count(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
return node.data->value.content.n;
}
#endif
// internal node map lookup
MPACK_INLINE_SPEED mpack_node_t mpack_node_map_at(mpack_node_t node, size_t index, size_t offset);
#if MPACK_DEFINE_INLINE_SPEED
MPACK_INLINE_SPEED mpack_node_t mpack_node_map_at(mpack_node_t node, size_t index, size_t offset) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
if (index >= node.data->value.content.n) {
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
return mpack_node(node.tree, mpack_node_child(node, index * 2 + offset));
}
#endif
/**
* Returns the key node in the given map at the given index.
*
* A nil node is returned in case of error.
*
* @throws mpack_error_type if the node is not a map
* @throws mpack_error_data if the given index is out of bounds
*/
MPACK_INLINE mpack_node_t mpack_node_map_key_at(mpack_node_t node, size_t index) {
return mpack_node_map_at(node, index, 0);
}
/**
* Returns the value node in the given map at the given index.
*
* A nil node is returned in case of error.
*
* @throws mpack_error_type if the node is not a map
* @throws mpack_error_data if the given index is out of bounds
*/
MPACK_INLINE mpack_node_t mpack_node_map_value_at(mpack_node_t node, size_t index) {
return mpack_node_map_at(node, index, 1);
}
/**
* Returns the value node in the given map for the given integer key. If the given
* node is not a map, mpack_error_type is raised and a nil node is
* returned. If the given key does not exist in the map, mpack_error_data
* is raised and a nil node is returned.
*/
MPACK_INLINE mpack_node_t mpack_node_map_int(mpack_node_t node, int64_t num) {
return mpack_node_map_int_impl(node, num, false);
}
/**
* Returns the value node in the given map for the given integer key, or NULL
* if the map does not contain the given key.
*
* @throws mpack_error_type if the node is not a map
*/
MPACK_INLINE mpack_node_t mpack_node_map_int_optional(mpack_node_t node, int64_t num) {
return mpack_node_map_int_impl(node, num, true);
}
/**
* Returns the value node in the given map for the given unsigned integer key. If
* the given node is not a map, mpack_error_type is raised and a nil node is
* returned. If the given key does not exist in the map, mpack_error_data
* is raised and a nil node is returned.
*/
MPACK_INLINE mpack_node_t mpack_node_map_uint(mpack_node_t node, uint64_t num) {
return mpack_node_map_uint_impl(node, num, false);
}
/**
* Returns the value node in the given map for the given unsigned integer
* key, or NULL if the map does not contain the given key.
*
* @throws mpack_error_type if the node is not a map
*/
MPACK_INLINE mpack_node_t mpack_node_map_uint_optional(mpack_node_t node, uint64_t num) {
return mpack_node_map_uint_impl(node, num, true);
}
/**
* Returns the value node in the given map for the given string key. If the given
* node is not a map, mpack_error_type is raised and a nil node is
* returned. If the given key does not exist in the map, mpack_error_data
* is raised and a nil node is returned.
*/
MPACK_INLINE mpack_node_t mpack_node_map_str(mpack_node_t node, const char* str, size_t length) {
return mpack_node_map_str_impl(node, str, length, false);
}
/**
* Returns the value node in the given map for the given string key, or NULL
* if the map does not contain the given key.
*
* @throws mpack_error_type if the node is not a map
*/
MPACK_INLINE mpack_node_t mpack_node_map_str_optional(mpack_node_t node, const char* str, size_t length) {
return mpack_node_map_str_impl(node, str, length, true);
}
/**
* Returns the value node in the given map for the given null-terminated string key.
* If the given node is not a map, mpack_error_type is raised and a nil node is
* returned. If the given key does not exist in the map, mpack_error_data
* is raised and a nil node is returned.
*/
MPACK_INLINE mpack_node_t mpack_node_map_cstr(mpack_node_t node, const char* cstr) {
return mpack_node_map_str(node, cstr, mpack_strlen(cstr));
}
/**
* Returns the value node in the given map for the given null-terminated
* string key, or NULL if the map does not contain the given key.
*
* @throws mpack_error_type if the node is not a map
*/
MPACK_INLINE mpack_node_t mpack_node_map_cstr_optional(mpack_node_t node, const char* cstr) {
return mpack_node_map_str_optional(node, cstr, mpack_strlen(cstr));
}
/**
* Returns true if the given node map contains a value for the given string key.
* If the given node is not a map, mpack_error_type is raised and null is
* returned.
*/
bool mpack_node_map_contains_str(mpack_node_t node, const char* str, size_t length);
/**
* Returns true if the given node map contains a value for the given
* null-terminated string key. If the given node is not a map, mpack_error_type
* is raised and null is returned.
*/
MPACK_INLINE bool mpack_node_map_contains_cstr(mpack_node_t node, const char* cstr) {
return mpack_node_map_contains_str(node, cstr, mpack_strlen(cstr));
}
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
/*
http://msgpack-json-editor.com/
https://en.wikibooks.org/wiki/C_Programming/Preprocessor#X-Macros
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include "mpack-config.h"
#include <mpack.h>
static mpack_writer_t writer;
#define SERIALIZE_STRUCT_MEMBER(member, type, _) type member;
#define SERIALIZE_CSTR_NULL(writer) \
mpack_write_cstr(writer, "null")
#define SERIALIZE_KEY(writer, key) \
mpack_write_cstr(writer, #key)
#define SERIALIZE_VALUE(writer, obj, member, Type) \
SERIALIZE_TYPE_##Type(writer, obj, member)
#define SERIALIZE_TYPE_uint8_t(writer, obj, member) \
mpack_write_u8(writer, obj->member)
#define SERIALIZE_TYPE_uint16_t(writer, obj, member) \
mpack_write_u16(writer, obj->member)
#define SERIALIZE_TYPE_str_t(writer, obj, member) \
if (obj->member) \
mpack_write_cstr(writer, obj->member); \
else \
SERIALIZE_CSTR_NULL(writer)
#define SERIALIZE_TYPE_sensor_meta_t(writer, obj, member) \
_serialize(sensor_meta_id, &obj->member, writer)
#define SERIALIZE_MEMBER_COUNT(_a1, _a2, _a3) 1+
#define SERIALIZE_MEMBER(member, Type, obj, writer) \
SERIALIZE_KEY(writer, member); \
SERIALIZE_VALUE(writer, obj, member, Type);
typedef const char * str_t;
#define OBJ_ITEM_LIST \
OBJ_ITEM(sensor_meta) \
OBJ_ITEM(star)
#define sensor_meta(_, ...) \
_(uid, uint16_t, __VA_ARGS__) \
_(label, str_t, __VA_ARGS__) \
_(descr, str_t, __VA_ARGS__) \
_(type, str_t, __VA_ARGS__)
#define star(_, ...) \
_(name, str_t, __VA_ARGS__) \
_(x, uint8_t, __VA_ARGS__) \
_(y, uint8_t, __VA_ARGS__) \
_(z, uint8_t, __VA_ARGS__) \
_(meta, sensor_meta_t, __VA_ARGS__)
// Create structs
#define OBJ_ITEM(name) \
typedef struct name { \
name(SERIALIZE_STRUCT_MEMBER, _) \
} name##_t;
OBJ_ITEM_LIST
#undef OBJ_ITEM
enum obj_list_ids{
#define OBJ_ITEM(name) name##_id,
OBJ_ITEM_LIST
#undef OBJ_ITEM
};
static const struct _obj_list_item
{
uint16_t id;
const char *name;
} obj_list[] = {
#define OBJ_ITEM(Name) { .id = Name##_id, .name = #Name },
OBJ_ITEM_LIST
#undef OBJ_ITEM
{ .id = 0, .name = NULL }
};
#define serialize(name, object, writer) _serialize(name##_id, object, writer)
// Create
void _serialize(enum obj_list_ids id, void *data, mpack_writer_t *writer)
{
switch(id) {
#define OBJ_ITEM(name) \
case name##_id: \
printf("serialize struct "#name "(id: %u)\n", obj_list[id].id); \
if (data) { \
mpack_start_map(writer, name(SERIALIZE_MEMBER_COUNT)0); \
name(SERIALIZE_MEMBER, ((struct name *)data), writer); \
mpack_finish_map(writer); \
} \
break;
//---
OBJ_ITEM_LIST
//---
default:
break;
}
}
void test_star(mpack_writer_t *writer)
{
struct star s;
memset(&s, 0, sizeof(s));
s.name = "Sirius";
s.x = 255;
s.y = 127;
s.z = 63;
s.meta.uid = 1234;
s.meta.label = "s.meta.label";
s.meta.descr = "s.meta.descr";
s.meta.type = "coord";
serialize(star, &s, writer);
}
void test_sensor_meta(mpack_writer_t *writer)
{
struct sensor_meta s;
memset(&s, 0, sizeof(s));
s.uid = 1;
s.label = "bat1-temp";
s.descr = "Battery #1 temp";
s.type = "percent";
serialize(sensor_meta, &s, writer);
}
int
main(void)
{
for (unsigned int i = 0; i < sizeof(obj_list)/sizeof(obj_list[0]) - 1; i++)
printf(".name = %s, .id = %u\n", obj_list[i].name, obj_list[i].id);
mpack_writer_init_file(&writer, "./test.bin");
mpack_start_array(&writer, 2);
test_star(&writer);
test_sensor_meta(&writer);
mpack_finish_array(&writer);
if (mpack_writer_destroy(&writer) != mpack_ok) {
fprintf(stderr, "An error occurred encoding the data!\n");
return -1;
}
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment