Last active
November 9, 2022 02:12
-
-
Save y011d4/755e2b7d32d587154514457797742a6f to your computer and use it in GitHub Desktop.
implementation of Reed-Solomon Coding using a case in https://static.chunichi.co.jp/chunichi/pages/feature/science/galois_field_in_auto_factory.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://static.chunichi.co.jp/chunichi/pages/feature/QR/galois_field_in_auto_factory.html | |
X = GF(2).polynomial_ring().gen() | |
poly = X ** 8 + X ** 4 + X ** 3 + X ** 2 + 1 | |
F = GF(2 ** 8, name="a", modulus=poly) | |
R.<x> = PolynomialRing(F) | |
def tobin(x, n): | |
x = Integer(x) | |
nbits = x.nbits() | |
assert nbits <= n | |
return x.bits() + [0] * (n - nbits) | |
def frombin(v): | |
return int("".join(map(str, v)), 2) | |
def toF(x): | |
x = frombin(tobin(x, 8)[::-1]) | |
return F.fetch_int(x) | |
def fromF(x): | |
x = x.integer_representation() | |
x = frombin(tobin(x, 8)[::-1]) | |
return x | |
# f(x) = a(x)x**22 - r(x) = k(x) * g(x) = k(x) * (x-1)(x-2)(x-4)...(x-2**21) | |
data = [65, 36, 134, 247, 114, 5, 21, 34, 6, 54, 246, 70, 82, 7, 118, 247, 38, 183, 50, 224, 236, 17, 0] | |
PR.<x> = PolynomialRing(ZZ) | |
ax = 0 | |
for d in data: | |
ax *= x | |
ax += toF(d) | |
gx = 1 | |
for i in range(22): | |
gx *= x - toF(2) ** i | |
rx = ax * x**22 % gx | |
fx_ = ax * x**22 - rx | |
for i in range(22): | |
assert fx_(toF(2)**i) == toF(0) | |
read_data = [fromF(fx_[i]) for i in range(45)[::-1]] | |
# data[1], data[2] are incorrect | |
read_data[1] = 44 | |
read_data[2] = 6 | |
fx = 0 | |
for d in read_data: | |
fx *= x | |
fx += toF(d) | |
Sx = 0 | |
for i in range(22): | |
Sx += fx(toF(2)**i) * x**i | |
f = x**22 | |
g = Sx | |
qs = [] | |
h = 0 | |
while True: | |
q, r = f.quo_rem(g) | |
f, g = g, r | |
qs.append(q) | |
h += 1 | |
if r.degree() <= 11: | |
break | |
f, g = 1, 0 | |
for i in range(h): | |
f, g = - qs[i] * f + g, f | |
gamma = toF(1) / f[0] | |
sigma = gamma * f | |
eta = (-1) ** h * gamma * r | |
for i in range(45): | |
if sigma(toF(2)**-i) == toF(0): | |
d_sigma = 0 | |
d_sigma = -toF(2)**-i * sigma / (x - toF(2)**-i) | |
e = fromF(eta(toF(2)**-i) / -d_sigma(toF(2)**-i)) | |
print(i, e, f"{read_data[44-i]} -> {fromF(toF(read_data[44-i]) - toF(e))}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment