Last active
November 23, 2022 17:43
F1 2022 Season Analysis with Python Fastf1 lib (Learning-by-doing)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import fastf1 | |
fastf1.Cache.enable_cache("../Desktop") | |
session=fastf1.get_session(2022,'Brazil','R') | |
session.load(telemetry=False, laps=False, weather=False) | |
russel=session.get_driver('RUS') | |
print(russel['FirstName']) | |
from matplotlib import pyplot as plt | |
import fastf1.plotting | |
fastf1.plotting.setup_mpl() | |
session=fastf1.get_session(2022,'Brazil','R') | |
session.load() | |
fast_verstappen=session.laps.pick_driver('RUS').pick_fastest() | |
verstappen_car_data=fast_verstappen.get_car_data() | |
time=verstappen_car_data['Time'] | |
speed=verstappen_car_data['Speed'] | |
fig,ax=plt.subplots() | |
ax.plot(time,speed,label='Fast lap') | |
ax.set_xlabel('Time') | |
ax.set_ylabel('Speed [Km/h]') | |
ax.set_title("Verstappen's fastest lap in Brazil Gp in 2022") | |
ax.legend() | |
############################################################################# | |
rus_lap=session.laps.pick_driver('RUS').pick_fastest() | |
ham_lap=session.laps.pick_driver('HAM').pick_fastest() | |
sai_lap=session.laps.pick_driver('SAI').pick_fastest() | |
rus_tel=rus_lap.get_car_data().add_distance() | |
ham_tel=ham_lap.get_car_data().add_distance() | |
sai_tel=sai_lap.get_car_data().add_distance() | |
mer_color=fastf1.plotting.team_color('MER') | |
fer_color=fastf1.plotting.team_color('FER') | |
fig,ax=plt.subplots() | |
fig.set_size_inches(20,10) | |
ax.plot(rus_tel['Distance'],rus_tel['Speed'],color=mer_color,label='RUS') | |
ax.plot(ham_tel['Distance'],ham_tel['Speed'],color=mer_color,label='HAM') | |
ax.plot(sai_tel['Distance'],sai_tel['Speed'],color=fer_color,label='SAI') | |
ax.set_xlabel('Meters') | |
ax.set_ylabel('Speed [Km/h]') | |
ax.legend() | |
plt.suptitle("Fastest Lap Comparision Brazil 2022 \n The First Three Driver") | |
######################################################################### | |
import fastf1 | |
import matplotlib.pyplot as plt | |
from matplotlib.collections import LineCollection | |
from matplotlib import cm | |
import numpy as np | |
lap=session.laps.pick_fastest() | |
tel=lap.get_telemetry() | |
x = np.array(tel['X'].values) | |
y = np.array(tel['Y'].values) | |
points = np.array([x, y]).T.reshape(-1, 1, 2) | |
segments = np.concatenate([points[:-1], points[1:]], axis=1) | |
gear = tel['nGear'].to_numpy().astype(float) | |
cmap = cm.get_cmap('Paired') | |
lc_comp = LineCollection(segments, norm=plt.Normalize(1, cmap.N+1), cmap=cmap) | |
lc_comp.set_array(gear) | |
lc_comp.set_linewidth(4) | |
plt.gca().add_collection(lc_comp) | |
plt.axis('equal') | |
plt.tick_params(labelleft=False, left=False, labelbottom=False, bottom=False) | |
title = plt.suptitle( | |
f"Fastest Lap Gear Shift Visualization\n" | |
f"{lap['Driver']} - {session.event['EventName']} {session.event.year}" | |
) | |
cbar = plt.colorbar(mappable=lc_comp, label="Gear", boundaries=np.arange(1, 10)) | |
cbar.set_ticks(np.arange(1.5, 9.5)) | |
cbar.set_ticklabels(np.arange(1, 9)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment