Created
October 26, 2015 03:23
-
-
Save yamano357/8a31b2dc0c7a20a30d36 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(hadleyverse) | |
library(PythonInR) | |
# http://textminingonline.com/getting-started-with-word2vec-and-glove-in-python | |
# https://github.com/maciejkula/glove-python | |
# git clone https://github.com/maciejkula/glove-python.git | |
# $ sudo python setup.py develop | |
# $ sudo python setup.py install | |
# PythonInR::pyIsConnected() | |
# PythonInR::pyExit() | |
# PythonInR::pyConnect() | |
defPyConst <- function ( | |
param_list | |
) { | |
sapply( | |
X = seq(from = 1, to = length(param_list)), | |
FUN = function (i) { | |
cast_fun <- ifelse(test = is.integer(x = param_list[i][[1]]), yes = as.integer, no = as.numeric) | |
PythonInR::pySet( | |
key = stringr::str_to_lower(string = names(param_list[i])), | |
value = cast_fun(param_list[i][[1]]) | |
) | |
} | |
) | |
} | |
callPyConst <- function ( | |
param_list_vec | |
){ | |
sapply(X = param_list_vec, FUN = defPyConst) | |
} | |
PythonInR::pyImport(import = c("Glove"), from = c("glove")) | |
PythonInR::pyImport(import = c("Corpus"), from = c("glove")) | |
SET_CORPUS <- list( | |
FILE_NAME = "ptb.train.txt", | |
CORPUS_PARAM = list( | |
WINDOW_SIZE = 10L | |
) | |
) | |
SET_GLOVE_PARAM <- list( | |
MODEL = list( | |
NO_COMPONENTS = 100L, LEARNING_RATE = 0.05 | |
), | |
TRAIN = list( | |
EPOCHS = 30L, NO_THREADS = 1L | |
) | |
) | |
callPyConst( | |
param_list_vec = list( | |
SET_CORPUS$CORPUS_PARAM, SET_GLOVE_PARAM$MODEL, SET_GLOVE_PARAM$TRAIN | |
) | |
) | |
sentences <- stringr::str_split( | |
string = readr::read_lines(file = SET_CORPUS$FILE_NAME, n_max = -1), | |
pattern = "[:space:]", n = Inf | |
) | |
PythonInR::pySet(key = "sentences", value = sentences) | |
create_corpus <- ' | |
corpus = Corpus() | |
corpus.fit(corpus = sentences, window = window_size) | |
' | |
PythonInR::pyExec(code = create_corpus) | |
# PythonInR::pyPrint(objName = 'len(corpus.dictionary)') | |
# PythonInR::pyPrint(objName = 'corpus.dictionary') | |
train_glove <- ' | |
glove_model = Glove(no_components = no_components, learning_rate = learning_rate) | |
glove_model.fit(matrix = corpus.matrix, epochs = epochs, no_threads = no_threads, verbose = False) | |
glove_model.add_dictionary(corpus.dictionary) | |
' | |
PythonInR::pyExec(code = train_glove) | |
word_vectors <- PythonInR::pyGet(key = 'glove_model.word_vectors') | |
words <- sort(x = PythonInR::pyGet(key = 'corpus.dictionary')) + 1 | |
rownames(word_vectors) <- names(words) | |
word_similar <- do.call(what = "rbind", args = PythonInR::pyGet(key = 'glove_model.most_similar(word = "man", number = 10)')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment