Skip to content

Instantly share code, notes, and snippets.

View yasark's full-sized avatar
💭
I may be slow to respond.

yasark

💭
I may be slow to respond.
View GitHub Profile
import itertools
def prepro(pairs, filterout=None, hard_lmt=100000):
pairs['relation'] = 1
G = nx.from_pandas_edgelist(pairs, 'subject', 'object',
create_using=nx.DiGraph())
if filterout:
nodes = \
list(set(pairs[~pairs.subject_type.isin(filterout)]['subject'].tolist()
+ pairs[~pairs.object_type.isin(filterout)]['object'].tolist()))
import networkx as nx
import matplotlib.pyplot as plt
def draw_kg(pairs):
k_graph = nx.from_pandas_edgelist(pairs, 'subject', 'object',
create_using=nx.MultiDiGraph())
node_deg = nx.degree(k_graph)
layout = nx.spring_layout(k_graph, k=0.15, iterations=20)
plt.figure(num=None, figsize=(120, 90), dpi=80)
import pandas as pd
import re
import spacy
import neuralcoref
nlp = spacy.load('en_core_web_lg')
neuralcoref.add_to_pipe(nlp)
def get_entity_pairs(text, coref=True):
import pandas as pd
from collections import Counter
import tensorflow as tf
from tffm import TFFMRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import numpy as np
# Loading datasets'