Usually, located at /usr/local/cuda/bin
$ nvprof python train_mnist.py
I prefer to use --print-gpu-trace.
import os | |
import glob | |
import pandas as pd | |
import xml.etree.ElementTree as ET | |
def xml_to_csv(path): | |
xml_list = [] | |
for xml_file in glob.glob(path + '/*.xml'): | |
tree = ET.parse(xml_file) |
""" | |
Usage: | |
# From tensorflow/models/ | |
# Create train data: | |
python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record | |
# Create test data: | |
python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record | |
""" | |
from __future__ import division | |
from __future__ import print_function |
#!/bin/bash | |
# Note: you might prefer latexmk -c since latexmk is great. It doesn't clean all of these, but see | |
# https://tex.stackexchange.com/questions/83341/clean-bbl-files-with-latexmk-c/83386#83386 | |
exts=".aux .lof .log .lot .fls .out .toc .dvi .bbl .bbl-SAVE-ERROR .bcf .bcf-SAVE-ERROR .blg -blx.aux -blx.bib -blx.bib .run.xml .fdb_latexmk .synctex.gz .syntex.gz(busy) .pdfsync .algorithms .alg .loa .thm .nav .snm .vrb .acn .acr .glg .glo .gls .brf .lol .idx .ilg .ind .ist .maf .mtc .mtc0 .pyg .nlo .tdo .xdy .keys" | |
for x in "${@:-.}"; do | |
arg=$(echo ${x:-.} | perl -pe 's/\.(tex|pdf)$//') |