Skip to content

Instantly share code, notes, and snippets.

@yjmade
Last active May 27, 2024 04:52
Show Gist options
  • Save yjmade/faf60b39d3b60d68fd4985ef59fc61d7 to your computer and use it in GitHub Desktop.
Save yjmade/faf60b39d3b60d68fd4985ef59fc61d7 to your computer and use it in GitHub Desktop.
Open Torch CUDA shm in other process with numba
#In process 1
import torch
shape = (100000,)
a=torch.rand(shape, device="cuda:0").share_memory_()
deviceId, handle_ptr, size, offset,*_ =a.storage()._share_cuda_()
# in process 2
import numpy as np
import numba.cuda
context=numba.cuda.current_context(deviceId)
h1=numba.cuda.IpcHandle(
None,
numba.cuda.cudadrv.drvapi.cu_ipc_mem_handle(*handle_ptr),
size,
source_info=context.device.get_device_identity(),
offset=offset
)
h2=numba.cuda.cudadrv.devicearray.IpcArrayHandle(h1,{
'shape': shape,
'strides': (4,), # float32 4, float64 8
'dtype': np.float32
})
with h2 as nd_array:
#now nd_array is SHM with torch
#https://docs.cupy.dev/en/stable/user_guide/interoperability.html
cupy_array = cupy.asarray(nd_array) # share same shm with torch
np_array = np.array(nd_array) # clone to CPU
torch_tensor=torch.as_tensor(nd_array,device="cuda") # share same shm with torch, don't specify which cuda, torch will identify itself
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment